PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the influence of magnetic induction ramp profile on axial force and friction torque generated by MR fluid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The unique properties of magnetic fluids result from their ability to undergo reversible, almost immediate, changes in their rheological properties under the influence of magnetic fields as well as the possibility to position them by magnetic field forces. It is also possible to control the direction and flow rate of such fluids. These properties provide an efficient way to develop new types of controllable machines and devices, such as brakes, clutches and bearings. The objective of the study was to examine the axial force and torque friction of a magnetorheological (MR) fluid working in the shear flow mode (parallel plate system) subjected to different magnetic induction ramp profiles. The rotation speed and working gap height were also taken into account. Determining the response of the tested system to magnetic induction change in different working conditions was of particular interest.
Słowa kluczowe
Rocznik
Strony
153--157
Opis fizyczny
Bibliogr. 26 poz., rys., wykr.
Twórcy
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
  • AGH University of Science and Technology Faculty of Mechanical Engineering and Robotics, Department of Machine Design and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland
Bibliografia
  • 1. Ajay Kumar H. N., Shilpashree D. J., Adarsh M. S., Amith D., Kulkarni S. (2016), Development of Smart Squeeze Film Dampers for Small Rotors, Procedia Engineering, 144, 790-800,
  • 2. Bajkowski J.M. (2012), Design, analysis and performance evaluation of the linear, magnetorheological damper, Acta Mechanica et Automatica, 6(1), 5-9.
  • 3. Chen S., Huang J., Shu H., Sun T., Jian K., (2013) Analysis and Testing of Chain Characteristics and Rheological Properties for Magnetorheological Fluid, Advances in Materials Science and Engineering, 2013, 1-6.
  • 4. Gong X., Guo, Ch., Xuan Sh., Liu T., Zong L., Peng Ch. (2012), Oscillatory normal forces of magnetorheological fluids, Soft Matter, 8(19), 5256-5261,
  • 5. Guldbakke J. M., Hesselbach J. (2006), Development of bearings and a damper based on magnetically controllable fluids, Journal of Physics, 18, 2959.
  • 6. Guo Ch.Y., Gong X.L. (2012,) Normal forces of magnetorheological fluids under oscillatory shear, Journal of Magnetism and Magnetic Materials, 324(6), 1218-1224.
  • 7. Hegger C. and Maas J. (2016) Investigation of the squeeze strengthening effect in shear mode, J. Intell. Mater. Syst. Struct., 27 1895–907.
  • 8. Horak W., Salwiński J., Szczęch M. (2017a), Analysis of the influence of selected factors on the capacity of thrust sliding bearings lubricated with magnetic fluids, Tribologia, 48(4), 33–38.
  • 9. Horak W., Salwiński J., Szczęch M. (2017b), Experimental Study on Normal Force in MR Fluids Under Low and High Shear Rates, Machine Dynamics Research, 41(1), 89-100.
  • 10. Horak W., Salwiński J., Szczęch M. (2017c), Test stand for the examination of magnetic fluids in shear and squeeze flow mode, Tribologia, 48(2), 67–75.
  • 11. Jang K.I., Min B.K., Seok J. (2011), A behavior model of a magnetorheological fluid in direct shear mode, Journal of Magnetism and Magnetic Materials, 323(10), 1324-1329.
  • 12. Jastrzębski Ł., Sapiński B. (2017), Experimental Investigation of an Automotive Magnetorheological Shock Absorber, Acta Mechanica et Automatica, 11(4), 253-259.
  • 13. Klingenberg D.J., Ulicny J.C., Golden M.A. (2007), Mason numbers for magnetorheology, Journal of Rheology, 51(5), 883–893;
  • 14. Kubík M., Macháček O., Strecker Z., Roupec J., Mazůrek I. (2017), Design and testing of magnetorheological valve with fast force response time and great dynamic force range, Smart Material and Structure, 26 047002.
  • 15. Laun H. M., Schmidt G., Gabriel C., Kieburg C., (2008) Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations, Rheologica Acta, 47(9), 1049-1059.
  • 16. Li W., Zhang X. (2008), The effect of friction on magnetorheological fluids, Korea-Aust. Rheol. J., 20, 45–50.
  • 17. López-López M.T., Kuzhir P., Durán J.D.G, Bossis G. (2010), Normal stresses in a shear flow of magnetorheological suspensions: Viscoelastic versus Maxwell stresses, Journal of Rheology, 5(5), 1119-1136
  • 18. Odenbach S., Pop L.M., Zubarev A.Yu. (2007), Rheological properties of magnetic fluids and their microstructural background, GAMM-Mitt, 1, 195-204.
  • 19. Raj K., Moskowitz B., Casciari R. (1995), Advances in ferrofluid technology, Journal of Magnetism and Magnetic Materials, 149, 174-180.
  • 20. Rosensweig R.E. (1985), Ferrohydrodynamics, Cambridge University Press, Cambridge.
  • 21. Salwiński J., Horak W. (2011), Measurement of normal force in magnetorheological and ferrofluid lubricated bearings, Key Engineering Materials, 490, 25-32.
  • 22. See H., Tanner R. (2003), Shear rate dependence of the normal force of a magnetorheological suspension, Rheologica Acta, 42(1-2),166-170.
  • 23. Shan L., Chen K., Zhou M., Zhang X., Meng Y., Tian Y. (2015), Shear history effect of magnetorheological fluids, Smart Materials and Structures, 24(10), 105030.
  • 24. Szczęch M., Horak W. (2017), Numerical simulation and experimental validation of the critical pressure value in ferromagnetic fluid seals, IEEE Transactions on Magnetics, 53(7), 1–5.
  • 25. Vekas L. (2008), Ferrofluids and Magnetorheological Fluids, Advances in Science and Technology, 54, 127-136.
  • 26. Wang Y., Yin S., Huang H., (2016) Polishing characteristics and mechanism in magnetorheological planarization using a permanent magnetic yoke with translational movement, Precis. Eng., 43, 93–104.
Uwagi
This work is financed by AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, research program No. 16.16.130.942
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a93b95eb-c281-4e82-9018-1f689afe4106
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.