PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of plant growth-promoting rhizobacteria isolates as a potential biofertiliser for wheat

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Plant growth-promoting rhizobacteria (PGPR) isolated from the rhizosphere soil of eight field crops at different locations in Egypt were identified. Rhizobacteria strains were identified as Bacillus endophyticus AW1 5, B. filamentosus EM9, ET3, Micrococcus luteus KT2, FW9, FC13, SaW4, Enterobacter cloacae SK18, Pseudomonas azotoformans TPo10, Citrobacter braakii TC3. All isolates solubilised insoluble phosphate and produced IAA, while only six were able to produce siderophores in vitro. Vegetative growth and yield of wheat cv. ‘Sakha 94’ were enhanced after the application of single inoculation of each isolate compared to the control. Grain yield was increased by 20.7-96.5% over the control according to bacterial isolates. Available phosphorus (P) and counts of total bacteria in soil were observed to be significantly increased in treatments than in control. After the wheat harvest, soil pH was observed to be decreased, and a highly significant negative correlation was observed between soil pH and the levels of available phosphorus. Significant increases in grain and straw yields, as well as uptake of nitrogen (N) and P by plants, were observed due to inoculation with PGPR isolates. Levels of photosynthetic pigments, free amino acids, free phenolics, and reducing sugars in flag leaf and spikes were significantly enhanced by the application of all PGPR isolates compared to the control. Thus this study identifies the PGPR isolates for the improvement of the growth, yield, and quality of wheat. The study may be also useful for field evaluation under different soils and environmental conditions before generalising PGPR isolates as biofertilisers.
Wydawca
Rocznik
Strony
99--111
Opis fizyczny
Bibliogr. 70 poz., rys., tab., wykr.
Twórcy
  • Suez Canal University, Faculty of Agriculture, Department of Soil and Water, Ismailia, Egypt
  • Suez Canal University, Faculty of Agriculture, Department of Agricultural Botany, Ismailia, Egypt
  • Suez Canal University, Faculty of Agriculture, Department of Agricultural Botany, Ismailia, Egypt
  • Suez Canal University, Faculty of Agriculture, Department of Soil and Water, Ismailia, Egypt
  • Institute of Technology and Life Sciences - National Research Institute, Falenty, Poland
  • Poznan University of Life Sciences, Department of Ecology and Environmental Protection, Laboratory of Bioclimatology, Poznań, Poland
  • Tanta University, Faculty of Agriculture, Agricultural Botany Department, Seberbay Campus, 31257, Tanta, Egypt
Bibliografia
  • ABD EL-AZEEM S.A.M. 2006. Studies on plant growth promoting rhizobacteria microorganisms. PhD Thesis. Ismailia, Egypt. Suez Canal University pp. 159.
  • ABD EL-AZEEM S.A.M., MEHANA T.A., SHABAYEK A.A. 2008. Effect of seed inoculation with plant growth-promoting rhizobacteria on the growth and yield of wheat (Triticum aestivum L) plants cultivated in a sandy soil. Catrina. Vol. 3(2) p. 69–74.
  • ABDEL-RAHMAN H.M., SALEM A.A., MOUSTAFA M.M.A., EL-GARHY H.A.S. 2017. A novice Achromobacter sp. EMCC1936 strain acts as a plant growth-promoting agent. Acta Physiologiae Plantarum. Vol. 39(61) p. 1–15. DOI 10.1007/s11738-017-2360-6.
  • ABDEL-RAHMAN T., THOMAS H., DOSS G.J., HOWELL L. 1975. Changes in endogenous plant hormones in cherry tomato fruits during development and maturation. Physiologia Plantarum. Vol. 34(1) p. 39–43. DOI 10.1111/j.1399-3054.1975.tb01852.x.
  • ABDUL WAHID O.A., MEHANA T.A. 2000. Impact of phosphate solubilizing fungi on the yield and phosphorus-uptake by wheat and faba bean plants. Microbiological Research. Vol. 155(3) p. 221–227. DOI 10.1016/S0944-5013(00)80036-1.
  • ABULFARAJ A.A., JALAL R.S. 2021. Use of plant growth-promoting bacteria to enhance salinity stress in soybean (Glycine max L.) plants. Saudi Journal of Biological Sciences. Vol. 28(7) p. 3823–3834. DOI 10.1016/j.sjbs.2021.03.053.
  • AHEMAD M., KHAN M.S. 2010. Influence of selective herbicides on plant growth promoting traits of phosphate solubilizing Enterobacter asburiae strain PS2. Research Journal of Microbiology. Vol. 5(9) p. 849–857. DOI 10.3923/jm.2010.849.857.
  • AHEMAD M., KIBRET M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University – Science. Vol. 26(1) p. 1–20. DOI 10.1016/j.jksus.2013.05.001.
  • AHMED K.G.E. 2008. Use of nitrification inhibitors as a means for improving nitrogen fertilizer efficiency in soils. MSc Thesis. Ismailia, Egypt. Suez Canal University pp. 193.
  • AL-ATTAR O.M.G. 2013. Influence of seed inoculation with plant growth promoting rhizobacteria on mineral nutrition of plant and soil fertility. MSc Thesis. Ismailia, Egypt. Suez Canal University pp. 205.
  • ALI M.S.M. 1999. Use of sewage sludge and chicken manure for improving productivity of a sandy soil. MSc Thesis. Ismailia, Egypt. Suez Canal University pp. 176.
  • ARNON D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology. Vol. 24(1) p. 1–15. DOI 10.1104/pp.24.1.1.
  • BACKER R., ROKEM J.S., ILANGUMARAN G., LAMONT J., PRASLICKOVA D., RICCI E., SUBRAMANIAN S., SMITH D.L. 2018. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science. Vol. 9, 1473 p. 1–17. DOI 10.3389/fpls.2018.01473.
  • BATTAIS F., RICHARD C., JACQUENET S., DENERY-PAPINI S., MONERET-VAUTRIN D.A. 2008. Wheat grain allergies: An update on wheat allergens. European Annals of Allergy and Clinical Immunology. Vol. 40(3) p. 67–76.
  • BECHTAOUI N., RAKLAMI A., TAHIRI A.I., BENIDIRE L., EL ALAOUI A., MEDDICH A., GÖTTFERT M., OUFDOU K. 2019. Characterization of plant growth promoting rhizobacteria and their benefits on growth and phosphate nutrition of faba bean and wheat. Biology Open. Vol. 8(7) p. 1–8. DOI 10.1242/bio.043968.
  • BLAST undated. Basic local alignment search tool [online]. National Library of Medicine, National Center for Biotechnology Information. [Access 07.03.2022]. Available at: https://blast.ncbi.nlm.nih.gov/Blast.cgi
  • BREMNER J.M. 1996. Nitrogen-Total. Ch. 37. In: Methods of soil analysis. Part III. Eds. D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, M.E. Sumner. SSSA Book Series 5. Madison, WI, USA. ASA, SSSA p. 1085–1121. DOI 10.2136/sssabookser5.3.c37.
  • CANBOLAT M.Y., BILEN S., CAKMAKCI R., SAHIN F., AYDIN A. 2006. Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biology and Fertility of Soils. Vol. 42(4) p. 350–357. DOI 10.1007/s00374-005-0034-9.
  • CHEN J., ZHAO G., WEI Y., DONG Y., HOU L., JIAO R. 2021. Isolation and screening of multifunctional phosphate solubilizing bacteria and its growth-promoting effect on Chinese fir seedlings. Scientific Reports. Vol. 11(1), 9081 p. 1–13. DOI 10.1038/s41598-021-88635-4.
  • DASGUPTA D., GHATI A., SARKAR A., SENGUPTA C., PAUL G. 2015. Application of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Sesbania bispinosa on the growth of chickpea (Cicer arietinum L.). International Journal of Current Microbiology and Applied Sciences. Vol. 4(5) p. 1033–1042.
  • DAVIS B.J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Annals of the New York Academy of Sciences. Vol. 121(2) p. 404–427. DOI 10.1111/j.1749-6632.1964.tb14213.x.
  • DE FREITAS J.R., GERMIDA J.J. 1992. Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil Biology and Biochemistry. Vol. 24(11) p. 1137–1146. DOI 10.1016/0038-0717(92)90064-5.
  • DIAS A., DOS SANTOS S.G., VASCONCELOS V.G.S., RADL V., XAVIER G.R., RUMJANEK N.G., RIBEIRO R.L.D. 2013. Screening of plant growth promoting rhizobacteria for the development of vegetable crops inoculant. African Journal of Microbiology Research. Vol. 7(19) p. 2087–2092. DOI 10.5897/AJMR12.2258.
  • DOS SANTOS R.M., DIAZ P.A.E., LOBO L.L.B., RIGOBELO E.C. 2020. Use of plant growth-promoting rhizobacteria in maize and sugarcane: Characteristics and applications. Frontiers in Sustainable Food Systems. Vol. 4, 136 p. 1–15. DOI 10.3389/fsufs.2020.00136.
  • D’OVIDIO R., MASCI S. 2004. The low-molecular-weight glutenin subunits of wheat gluten. Journal of Cereal Science. Vol. 39(3) p. 321–339. DOI 10.1016/j.jcs.2003.12.002.
  • DUPONT F.M., ALTENBACH S.B. 2003. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science. Vol. 38(2) p. 133–146. DOI 10.1016/S0733-5210(03)00030-4.
  • EKINCI M., TURAN M., YILDIRIM E., GUNEŞ A., KOTAN R., DURSUN A. 2014. Effect of plant growth promoting rhizobacteria on growth, nutrient, organic acid, amino acid and hormone content of cauliflower (Brassica oleracea L. var. botrytis) transplants. Acta Scientiarum Polonorum – Hortorum Cultus. Vol. 13(6) p. 71–85.
  • GAMALERO E., GLICK B.R. 2011. Mechanisms used by plant growth-promoting bacteria. In: Bacteria in Agrobiology: Plant Nutrient Management. Ed. D. Maheshwari. Heidelberg, Berlin. Springer p. 17–46. DOI 10.1007/978-3-642-21061-7_2.
  • GEE G.W., BAUDER J.W. 1986. Particle-size analysis. Ch. 15. In: Methods of soil analysis. Part 1: Physical and mineralogical methods. Ed. A. Klute. 2nd ed. Madison, Wisconsin, USA. ASA, SSSA p. 383–409. DOI 10.2136/sssabookser5.1.2ed.c15.
  • GHANEM O.M., RABIE R.K., ABD EL-AZEEM S.A.M., MEHANA T.A. 2013. Response of wheat to inoculation with plant-growth promoting rhizobacteria at different P fertilization levels. Journal of Soil Sciences and Agricultural Engineering. Vol. 4(6) p. 563–575. DOI 10.21608/JSSAE.2013.51950.
  • GOSWAMI D., THAKKER J.N., DHANDHUKIA P.C. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food and Agriculture. Vol. 2(1), 1127500 p. 1–19. DOI 10.1080/23311932.2015.1127500.
  • GROVER M., BODHANKAR S., SHARMA A., SHARMA P., SINGH J., NAIN L. 2021. PGPR mediated alterations in root traits: way toward sustainable crop production. Frontiers in Sustainable Food Systems. Vol. 4, 618230 p. 1–28. DOI 10.3389/fsufs.2020.618230.
  • HAKIM S., NAQQASH T., NAWAZ M.S., LARAIB I., SIDDIQUE M.J., ZIA R., MIRZA M.S., IMRAN A. 2021. Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability. Frontiers in Sustainable Food Systems. Vol. 5, 617157 p. 1–23. DOI 10.3389/fsufs.2021.617157.
  • HOLT J.G., KRIEG N.R., SNEATH P.H.A., STALEY J.T., WILLIAM S.T. (eds.) 1994. Bergey’s manual of determinative bacteriology. 9 th ed. Baltimore, MD, USA. Williams and Wilikins. ISBN 9780683006032 pp. 787.
  • JACKSON M.L. 1973. Soil chemical analysis. New Delhi, India. Prentice Hall pp. 498.
  • KHALID A., ARSHAD M., ZAHIR Z.A. 2004. Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology. Vol. 96(3) p. 473–480. DOI 10.1046/j.1365-2672.2003.02161.x.
  • KHANAFARI A., BELADI M., SHARIFNIA F. 2012. An investigation of rhizobacteria as biofertilizer on Mentha L. compounds change. Annals of Biological Research. Vol. 3(9) p. 4293–4302.
  • KLOEPPER J.W. 1994. Plant growth-promoting rhizobacteria (other systems). In: Azospirillum/Plant associations. Ed. Y. Okon. Boca Raton, FL, USA. CRC Press p. 137–166.
  • KUNDAN R., PANT G., JADON N., AGRAWAL P.K. 2015. Plant growth promoting rhizobacteria: Mechanism and current prospective. Journal of Fertilizers & Pesticides. Vol. 6(2) p. 1–9. DOI 10.4172/2471-2728.1000155.
  • KUO S. 1996. Phosphorus. Ch. 32. In: Methods of soil analysis. Part III. Chemical methods. Eds. D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, M.E. Sumner. SSSA Book Series 5. Madison, WI, USA. American Society of Agronomy and Soil Science Society of America p. 869–919. DOI 10.2136/sssabookser5.3.c32.
  • LAEMMLI U.K. 1970. Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature. Vol. 227(5259) p. 680–685. DOI 10.1038/227680a0.
  • LEECH N.L., BARRETT K.C., MORGAN G.A. 2005. SPSS for intermediate statistics: Use and interpretation. 2 nd ed. Mahwah, New Jersey, USA. Lawrence Erlbaum Associates, Inc. publishers pp. 255.
  • MA Y., RAJKUMAR M., VICENTE J.A., FREITAS H. 2011. Inoculation of Niresistant plant growth promoting bacterium Psychrobacter sp. strain SRS8 for the improvement of nickel phytoextraction by energy crops. International Journal of Phytoremediation. Vol. 13(2) p. 126–139. DOI 10.1080/15226511003671403.
  • MAC FADDIN J.F. 1976. Biochemical tests for identification of medical bacteria. Baltimore, USA. Waverly Press pp. 527.
  • MALDONADO S., RODRÍGUEZ A., ÁVILA B., MORALES P., GONZÁLEZ M.P., ARAYA ANGEL J.P.A., ..., STOLL A. 2020. Enhanced crop productivity and sustainability by using native phosphate solubilizing rhizobacteria in the agriculture of arid zones. Frontiers in Sustainable Food Systems. Vol. 4, 607355 p. 1–14. DOI 10.3389/fsufs.2020.607355.
  • MALIHA R., SAMINA K., NAJMA A., SADIA A., FAROOQ L. 2004. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pakistan Journal of Biological Sciences. Vol. 7(2) p. 187–196. DOI 10.3923/pjbs.2004.187.196.
  • MARTIN J.H., LEONARD W.H., STAMP D.L. 1976. Principles of field crop production. 3 rd ed. New York. MacMillan. ISBN 0023767200 pp. 1030.
  • MEHANA T.A. 1994. Microbiological properties and nutrient availability in a salt–affected calcareous soil as influenced by certain amendments under leaching conditions. Bulletin of Suez Canal University. Vol. 3 p. 384–402.
  • MEHANA T.A., FARAG F.M. 2000. Influence of phosphate dissolving microorganisms and elemental sulfur on phosphorus and micronutrient availability in a calcareous soil treated with rock phosphate. Journal of Agricultural Science Mansoura University. Vol. 25(5) p. 2983–2993.
  • MOORE T.C. 1974. Research experiences in plant physiology. A laboratory manual. Berlin, Heidelberg. Springer pp. 462.
  • MOUSTAINE M., KAHKAHI E.R., BENBOUAZZA A.E., BENKIRANE R., ACHBANI E.H. 2016. The role of plant growth-promoting rhizobacteria (PGPR) in stimulating the growth of wheat (Triticum aestivum L.) in Meknes region, Morocco. Plant Cell Biotechnology and Molecular Biology. Vol. 17(7–8) p. 363–373.
  • NAVEED M., ZAHIR Z.A., KHALID M., ASGHAR H.N., AKHTAR M.J., ARSHAD M. 2008. Rhizobacteria containing ACC-deaminase for improving growth and yield of wheat under fertilized conditions. Pakistan Journal of Botany. Vol. 40(3) p. 1231–1241.
  • PATTEN C.L., GLICK B.R. 1996. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology. Vol. 42(3) p. 207–220. DOI 10.1139/m96-032.
  • RAZA W., SHEN Q. 2010. Growth, Fe 3+ reductase activity and siderophore production by Paenibacillus polymyxa SOR-21 under differential iron conditions. Current Microbiology. Vol. 61(5) p. 390–395. DOI 10.1007/s00284-010-9624-3.
  • PRATHIBHA K.S., SIDDALINGESHWARA K.G. 2013. Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescence as rhizobacteria on seed quality of sorghum. International Journal of Current. Microbiology and Applied Science. Vol. 2(3) p. 11–18.
  • ROSEN H. 1957. A modified ninhydrin colourimetric analysis for amino acids. Archives of Biochemistry and Biophysics. Vol. 67(1) p. 10–15.
  • SARWAR M., ARSHAD M., MARTENS D.A., FRANKENBERGER J.W.T. 1992. Tryptophan – dependent biosynthesis of auxins in soil. Plant and Soil. Vol. 147(2) p. 207–215.
  • SHARMA A., JOHRI B.N., SHARMA A.K., GLICK B.R. 2003. Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in Mung bean (Vigna radiata L. Wilzeck). Soil Biology and Biochemistry. Vol. 35(7) p. 887–894. DOI 10.1016/S0038-0717(03)00119-6.
  • SONG O.R., LEE S.J., LEE Y.S., LEE S.C., KIM K.K., CHOI Y.L. 2008. Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Brazilian Journal of Microbiology. Vol. 39(1) p. 151–156. DOI 10.1590/S1517-838220080001000030.
  • STANLEY R.M. 1990. Experimental techniques in bacterial genetics. Boston. Jones and Bartlett Publishers pp. 180.
  • STARR M.P., STOLP H., TRÜPER H.G., BALOWS A., SCHLEGEL H.G. 1981. The prokaryotes. A handbook on habitats, isolation and identification of bacteria. Berlin, Germany. Springer-Verlag pp. xlviii + 2596.
  • STEFAN M., UNGUREANU E., OPRICA L., DUNCA S. 2007. The effect of some rhizobacterian strains on soluble proteins content in soybeans (Glycine max L. MERR.). Analele Ştiinţifice ale Universităţii “Alexandru Ioan Cuza”, Secţiunea Genetică şi Biologie Moleculară. T. 7 p. 23–26.
  • SWIFT R.S. 1996. Organic matter characterization. Ch. 35. In: Methods of soil analysis. Part III. Chemical Methods. Eds. D.L. Sparks, A. L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, M.E. Sumner. SSSA. Book Series 5. Madison, WI, USA. American Society of Agronomy and Soil Science Society of America p. 1011–1020. DOI 10.2136/sssabookser5.3.c35.
  • TURAN M., GULLUCE M., CAKMAKCI R., OZTAS T., SAHIN F. 2010. The effect of PGPR strain on wheat yield and quality parameters. In: 19th World Congress of Soil Science: Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010. [DVD]. Brisbane, Australia.
  • VENTOSA A., NETO J.J. 1995. Biotechnological applications and potentialities of halophilic microorganisms. World Journal of Microbiology and Biotechnology. Vol. 11(1) p. 85–94. DOI 10.1007/BF00339138.
  • VINAYARANI G., PRAKASH H.S.2018. Growth promoting rhizospheric and endophytic bacteria from Curcuma longa L. as biocontrol agents against rhizome rot and leaf blight diseases. The Plant Pathology Journal. Vol. 34(3) p. 218–235. DOI 10.5423/PPJ.OA.11.2017.0225.
  • VOS P., GARRITY G., JONES D., KRIEG N.R., LUDWIG W., RAINEY F.A., SCHLEIFER K.H., WHITMAN W.B. 2009. Bergey’s manual of systematic bacteriology. 2 nd ed. New York. Springer-Verlag. Vol. 3. ISBN 987-0-387-95041-9 pp. 1422.
  • WANI P.A., KHAN M.S. 2010. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology. Vol. 48(11) p. 3262–3267. DOI 10.1016/j.fct.2010.08.035.
  • WILLIAM H.P., CHICHILO A.C., REYNOLDS H. 1965. Official methods of analysis of the association of agricultural chemists. 10th ed. Washington, DC. Association of Agricultural Chemicals pp. 158.
  • ZUBERER D.A., ALEXANDER D.B. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biology and Fertility of Soils. Vol. 12 p. 39–45. DOI 10.1007/BF00369386.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a934c74f-012e-41c0-aadc-f370a562b835
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.