Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The practical applications of bacteriophages are associated with the problems related to the intensification, optimization of process production of this biomaterial and the search for new methods of production. The production of bacteriophages requires a fine balance between the dynamic growth of the bacteriophage and the host. The electromagnetic field (EMF) is a promising biotechnological method for the process production of bacteriophages. This study evaluates the use of various types of EMF to enhance the process. It was found that the process production of bacteriophages is divided into two stages. In the first stage, the influence of various types of EMF on the proliferation process of bacteria (host) was analyzed. Secondly, the process production of bacteriophage was implemented for the optimal infection conditions under the action of the various types of EMF. Moreover, the study demonstrated that the most effective bacteriophage production was the process with the application of the rotating magnetic field (RMF), pulsed magnetic field (PMF) and the static magnetic field (SMF) with negative polarity.
Czasopismo
Rocznik
Tom
Strony
491--–506
Opis fizyczny
Bibliogr. 50 poz., tab., rys., wykr.
Twórcy
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
- Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
autor
- West Pomeranian University of Technology in Szczecin, Faculty of Chemical Technology and Engineering, Department of Chemical and Process Engineering, al. Piastów 42, 71-065 Szczecin, Poland
autor
- Pomeranian Medical University in Szczecin, Chair of Microbiology, Immunology and Laboratory Medicine, Department of Laboratory Medicine, al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
Bibliografia
- 1. Agboluaje M., Sauvageau D., 2018. Bacteriophage production in bioreactors. In: Azeredo J., Sillankorva S. (Eds.), Methods in molecular biology, vol 1693. Humana Press, New York, NY, 173–193. DOI: 10.1007/978-1-4939-7395-8_15.
- 2. Al-Qodah Z., Al-Shannag M., Al-Busoul M., Penchev I., Orfali W., 2017. Immobilized enzymes bioreactors utilizing a magnetic field: A review. Biochem. Eng. J., 121, 94–106. DOI: 10.1016/j.bej.2017.02.003.
- 3. Augustyniak A., Grygorcewicz B., Nawrotek P., 2018. Isolation of multidrug resistant coliforms and their bacteriophages from swine slurry. Turkish J. Vet. Anim. Sci., 42, 319–325. DOI: 10.3906/vet-1710-102.
- 4. Beebout C.J., Sominsky L.A., Eberly A.R., Van Horn G.T., Hadjifrangiskou M., 2021. Cytochrome bd promotes Escherichia coli biofilm antibiotic tolerance by regulating accumulation of noxious chemicals, npj Biofilms Microsomes 7, 35. DOI: 10.1038/s41522-O21-O021O-x.
- 5. Byeon H.M., Vodyanoy V.J., Oh J.-H., Kwon J.-H., Park M.-K., 2015. Lytic phage-based magnetoelastic biosensors for on-site detection of methicillin-resistant Staphylococcus aureus on spinach leaves. J. Electrochem. Soc, 162, 8, B230. DOI: 10.1149/2.0681508jes.
- 6. Chanishvili N., 2012. Chapter 1 - Phage therapy - History from Twort and d'Herelle through Soviet experience to current approaches, In: Lobocka M., Szybalski W. (Eds.), Advances in virus research. Academic Press, 83,3—40. DOI: 10.1016/B978-0-12-394438-2.00O01-3.
- 7. Chen B.Y., Lim H.C., 1996. Bioreactor studies on temperature induction of the Q~ mutant of bacteriophage A in Escherichia coli. J. Biotechnol, 51,1-20. DOI: 10.1016/0168-1656(96)01571-4.
- 8. Chen X.A., Cen PL., 2005. A novel three-stage process for continuous production of penicillin G acylase by a temperature-sensitive expression system of Bacillus subtilis phage phil05. Chem. Biochem. Eng. Q., 19, 4, 367-372.
- 9. Domingues L., Vicente A.A., Lima N., Teixeira J.A., 2000. Applications of yeast flocculation in biotechnological processes. Biotechnol. Bioprocess Eng., 5, 288-305. DOI: 10.1007/BF02942185.
- 10. Ferrara R, Kim C.Y., Naranjo L.A., Bradbury A.R.M., 2015. Large scale production of phage antibody libraries using a bioreactor. mAbs, 7, 26-31. DOI: 10.4161/19420862.2015.989034.
- 11. Grieco S.H.H., Lee S., Dunbar W.S., MacGillivray R.T.A., Curtis S.B., 2009. Maximizing filamentous phage yield during computer-controlled fermentation. Bioprocess Biosyst. Eng., 32, 773-779. DOI: 10.1007/s00449-009-0303-3.
- 12. Grieco S.H.H., Wong A.Y.K., Dunbar W.S., MacGillivray R.T.A., Curtis S.B., 2012. Optimization of fermentation parameters in phage production using response surface methodology. J. Ind. Microbiol. Biotechnol, 39, 1515-1522. DOI: 10.1O07/sl0295-012-l 148-3.
- 13. Grygorcewicz B., Chajecka-Wierzchowska W., Augustyniak A., Wasak A., Stachurska X., Nawrotek P., Dolejjowska B., 2020. In-milk inactivation of Escherichia coli 0157:H7 by the environmental lytic bacteriophage ECPS-6. J. FoodSaf., 40, el2747. DOI: 10.1111/jfs. 12747.
- 14. Grygorcewicz B., Rakoczy R., Roszak M., Konopacki M., Kordas M., Piegat A., Serwin N., Cecerska-Heryd E., El Fray M., Dol^gowska B., 2022. Rotating magnetic field-assisted reactor enhances mechanisms of phage adsorption on bacterial cell surface. Curr. IssuesMol. Biol, 44,1316-1325. DOI: 10.3390/cimb44030088.
- 15. Grygorcewicz B., Wojciuk B., Roszak M., Lubowska N., Blazejczak P., Jursa-Kulesza J., Rakoczy R., Masiuk H., Dolejowska B., 2021. Environmental phage-based cocktail and antibiotic combination effects on Acinetobacter baumannii biofilm in a human urine model. Microb. Drug Resist., 21, 25-35. DOI: 10.1089/mdr.2020.0083.
- 16. Hadas H., Einav M., Fishov I., Zaritsky A., 1997. Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology, 143, 179-185. DOI: 10.1099/00221287-143-1-179.
- 17. Harada L.K., Silva E.C., Campos W.F., Del Fiol F.S., Vila M., Dabrowska K., Krylov V.N., Balcao V.M., 2018. Biotechnological applications of bacteriophages: State of the art. Microbiol. Res., 212-213,38-58. DOI: 10.1016/ j.micres.2018.04.007.
- 18. Hiremath N., Guntupalli R., Vodyanoy V, Chin B.A., Park M.K., 2015. Detection of methicillin-resistant Staphy-lococcus aureus using novel lytic phage-based magnetoelastic biosensors. Sens. Actuators, B, 210, 129-136. DOI: 10.1016/J.SNB.2014.12.083.
- 19. JaWonska J., Augustyniak A., Kordas M., Dubrowska K., Soloducha D., Borowski T., Konopacki M., Grygorcewicz B., Roszak M., Dolejowska B., Piz M., Filipek E., Wrdbel R.J., Leniec G, Rakoczy R., 2022a. Evaluation of ferrofluid-coated rotating magnetic field-assisted bioreactor for biomass production. Chem. Eng. J., 431,133913. DOI: 10.1016/J.CEJ.2021.133913.
- 20. Jablonska J., Dubrowska K., Augustyniak A., Kordas M., Rakoczy R., 2022b. Application of magnetically as¬sisted reactors for modulation of growth and pyocyanin production by Pseudomonas aeruginosa. Front. Bioeng. Biotechnol, 10, 795871. DOI: 10.3389/fbioe.2022.795871.
- 21. Joriczyk E., Klak M., Miedzybrodzki R., Gdrski A., 2011. The influence of external factors on bacteriophages— review. Folia Microbiol., 56, 191-200. DOI: 10.1007/s 12223-011-0039-8.
- 22. Kazmierczak N., Grygorcewicz B., Roszak M., Bochentyn B., Piechowicz L., 2022. Comparative assessment of bacteriophage and antibiotic activity against multidrug-resistant Staphylococcus aureus biofilms. Int. J. Mol. Sci., 23, 1274. DOI: 10.3390/IJMS23031274.
- 23. Konopacki M., Rakoczy R., 2019. The analysis of rotating magnetic field as a trigger of Gram-positive and Gram-negative bacteria growth. Biochem. Eng. J., 141,259-267. DOI: 10.1016/j.bej.2018.10.026.
- 24. Kropinski A.M., 2018. Bacteriophage research - What we have learnt and what still needs to be addressed. Res. Microbiol, 169, 481-487. DOI: 10.1016/j.resmic.2018.05.O02.
- 25. Krysiak-Baltyn K., Martin G.J.O., Gras S.L., 2018. Computational modelling of large scale phage production using a two-stage batch process. Pharmaceuticals, 11,31. DOI: 10.3390/phl 1020031.
- 26. Lin D.M., Koskella B., Lin H.C., 2017. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Then, 8, 162-173. DOI: 10.4292/wjgpt.v8.i3.162.
- 27. Mizoguchi K., Morita M., Fischer C.R., Yoichi M., Tanji Y., Unno H., 2003. Coevolution of bacteriophage PP01 and Escherichia coli 0157:H7 in continuous culture. Appl. Environ. Microbiol, 69, 170-176. DOI: 10.1128/ AEM.69.1.170-176.2003.
- 28. Nabergoj D., Kuzmid N, Drakslar B., Podgornik A., 2018. Effect of dilution rate on productivity of continuous bacteriophage production in cellstat. Appl. Microbiol. Biotechnol, 102, 3649-3661. DOI: 10.1007/s00253-018-8893-9.
- 29. Oh J.S., Cho D., Park T.H., 2005. Two-stage continuous operation of recombinant Escherichia coli using the bacteriophage AQ~ vector. Bioprocess Biosyst. Eng., 28, 1-7. DOI: 10.1007/s00449-005-0418-0.
- 30. Park S.H., Park T.H., 2000. Analysis of two-stage continuous operation of Escherichia coli containing bacteriophage A vector. Bioprocess Eng., 23, 557-563. DOI: 10.1007/s004499900194.
- 31. Podgornik A., JaneS N., Smrekar R, Peterka M., 2014. Continuous production of bacteriophages, In: Subra-manian G. (Ed.), Continuous processing in pharmaceutical manufacturing. Wiley, New York, USA, 297-329. DOI: 10.1002/9783527673681.chl2.
- 32. Rakoczy R., Konopacki M., Lechowska J., Bubnowska M., Hiirter A., Kordas M., Fijaflcowski K., 2018. Gas to liquid mass transfer in mixing system with application of rotating magnetic field. Chem. Eng. Process., 130, 11-18. DOI: 10.1016/j.cep.2018.05.013.
- 33. Rakoczy R., Lechowska J., Kordas M., Konopacki M., Fijaflcowski K., Drozd R., 2017. Effects of a rotating magnetic field on gas-liquid mass transfer coefficient. Chem. Eng. J., 327, 608-617. DOI: 10.1016/j.cej.2017.06.132.
- 34. Rao V.B., Zhu J., 2022. Bacteriophage T4 as a nanovehicle for delivery of genes and therapeutics into human cells. Curr. Opin. Virol, 55,101255. DOI: 10.1016/j.coviro.2022.101255.
- 35. Rosensweig R.E., 1979. Fluidization: Hydrodynamic stabilization with a magnetic field. Science, 204,4388,57-60. DOI: 10.1126/science.204.4388.57.
- 36. Sargeant K., Yeo R.G., Lethbridge J.H., Shooter K.V., 1968. Production of bacteriophage T7. Appl. Microbiol, 16, 1483-1488. DOI: 10.1128/aem.l6.10.1483-1488.1968.
- 37. Sauvageau D., Cooper D.G., 2010. Two-stage, self-cycling process for the production of bacteriophages. Microb. Cell Fact., 9, 81. DOI: 10.1186/1475-2859-9-81.
- 38. Sivaperumal P., Kamala K., 2022. Bacteriophages as novel tumor targeting therapy for oral squamous cell carcinoma (OSCC) cancer. Oral Oncol, 133, 106020. DOI: 10.1016/j.oraloncology.2022.106020.
- 39. Smrekar F., Ciringer M., JanCar J., Raspor P., Strancar A., Podgornik A., 2011. Optimization of lytic phage manufacturing in bioreactor using monolithic supports. J. Sep. Sci., 34,2152-2158. DOI: 10.1002/jssc.201100182.
- 40. Storms Z.J., Brown T, Cooper D.G., Sauvageau D., Leask R.L., 2014. Impact of the cell life-cycle on bacteriophage T4 infection. FEMS Microbiol. Lett., 353, 63-68. DOI: 10.1111/1574-6968.12402.
- 41. Struk M., Grygorcewicz B., Nawrotek P., Augustyniak A., Konopacki M., Kordas M., Rakoczy, R., 2017. Enhancing effect of 50 Hz rotating magnetic field on induction of Shiga toxin-converting lambdoid prophages. Microb. Pathogen., 109,4-7. DOI: 10.1016/j.micpath.2017.05.018.
- 42. Sulakvelidze A., Alavidze Z., Morris J.G., 2018. Bacteriophage therapy - from lab to clinical practice. Antimicrob. Agents Chemother., 45, 649-659. DOI: 10.1128/AAC.45.3.649-659.2001.
- 43. Wang S., Zeng X., Yang Q., Qiao S,. 2016. Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int. J. Mol. Sci., 17, 5, 603. DOI: 10.3390/ijmsl7050603.
- 44. Wang Z., Liu X., Ni S.Q., Zhang J., Zhang X., Ahmad H.A., Gao B., 2017. Weak magnetic field: A powerful strategy to enhance partial nitrification. Water Res., 120, 190-198. DOI: 10.1016/j.watres.2017.04.058.
- 45. Werquin M., Defives C, Hassani L., Andriantsimiavona-Otonia M., 1984. Large scale preparation of Rhizobium meliloti bacteriophages by fermenter culture./. Virol. Methods, 8,155-160. DOI: 10.1016/0166-0934(84)90049-1.
- 46. Wichman H.A., Millstein J., Bull J.J., 2005. Adaptive molecular evolution for 13,000 phage generations: A possible arms race. Genetics, 170,19-31. DOI: 10.1534/genetics. 104.034488.
- 47. Williams H.T.P., 2012. Coevolving parasites improve host evolutionary search on structured fitness landscapes. ALIFE 2012: The Thirteenth International Conference on the Synthesis and Simulation of Living Systems. East Lansing, Michigan, USA, 19-22 July 2012, 129-136. DOI: 10.7551/978-0-262-31050-5-ch019.
- 48. Winsor CP., 1932. The Gompertz curve as a growth curve. PNAS, 18,1,1-8. DOI: 10.1073/pnas.l8.1.1.
- 49. Winton A., 2015. Polypeptides for bio-tethering and self-assembly of lithium ion battery electrodes. Biophys. J., 108, 630a. DOI: 10.1016/j.bpj.2014.11.3422.
- 50. Zhang X., Yarema K., Xu A., 201-7. Impact of Static Magnetic Field (SMF) on microorganisms, plants and animals. In: Biological effects of static magnetic fields. Springer, Singapore, 133-172. DOI: 10.1007/978-981-10-3579-1_5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9315042-bf0a-4c8d-b950-93c2d7d078ac