PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic fuzzy model for detecting verbal violence in real time

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The crime rates in Mexico have been increasing in recent years; every day, there are reports on social media and in the news where assaults and verbal aggression by criminals can be seen. Public transportation units suffer from violence that authorities have not been able to reduce despite their efforts. This is why we have developed a fuzzy logic model that can adapt to almost any scenario thanks to the dynamism that we have implemented in each of its stages. We have obtained promising results that we believe will be of great help to the authorities for detecting the exact moment in which verbal aggression that is typical of a violent assault is happening in real time. This is a tool to help the authorities, not a substitution; we are simply making use of the latest technologies that are available to us. The goal of this paper is to provide a novel method for Mexican authorities in Mexico City in order to help the actual surveillance systems make faster decisions about whether violent assaults are happening or not.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
467--493
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
  • Autonomous Juarez University of Tabasco, Academic Division of Science & Information Technologies
  • Autonomous Juarez University of Tabasco, Academic Division of Science & Information Technologies
  • Autonomous Juarez University of Tabasco, Academic Division of Science & Information Technologies
Bibliografia
  • [1] Ahmed M.M., Isa N.A.M.: Information granularity model for evolving contextbased fuzzy system, Applied Soft Computing, vol. 33, pp. 183–196, 2015.
  • [2] Baker M.T., Van Hasselt V.B., Sellers A.H.: Validation of the Novaco Anger Scale in an Incarcerated Offender Population, Criminal Justice and Behavior, vol. 35(6), pp. 741–754, 2008.
  • [3] Bautista-Duran M., Garc´ıa-G´omez J., Gil-Pita R., Sanchez-Hevia H., MohinoHerranz I., Rosa-Zurera M.: Acoustic Detection of Violence in Real and Fictional Environments. In: ICPRAM, pp. 456–462, 2017.
  • [4] Bhaskar J., Sruthi K., Nedungadi P.: Hybrid approach for emotion classification of audio conversation based on text and speech mining, Procedia Computer Science, vol. 46, pp. 635–643, 2015.
  • [5] Bugueno Saez V.G.: Modelo de deteccion de agresiones verbales, por medio de algoritmos de Machine Learning, 2017, Repositorio Academico of Universidad de Chile. https://repositorio.uchile.cl/handle/2250/148580?
  • [6] Butko T.: Feature selection for multimodal: acoustic Event detection, Universitat Politecnica de Catalunya, 2011.
  • [7] Carletti V., Foggia P., Percannella G., Saggese A., Strisciuglio N., Vento M.: Audio surveillance using a bag of aural words classifier. In: 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 81–86, IEEE, 2013.
  • [8] Chang J.C., Wang P.S., Fan K.H., Yang S.R., Su D.Y., Lin M.S., Sun M.T., Tseng Y.C.: iMace: protecting females from sexual and violent offenders in a community via smartphones. In: 2011 40th International Conference on Parallel Processing Workshops, pp. 71–74, IEEE, 2011.
  • [9] Cheng M., Cai K., Li M.: RWF-2000: An open large scale video database for violence detection. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 4183–4190, IEEE, 2021.
  • [10] Giannakopoulos T.: Study and application of acoustic information for the detection of harmful content, and fusion with visual information, Department of Informatics and Telecommunications, vol PhD University of Athens, Greece, 2009.
  • [11] Giannakopoulos T., Kosmopoulos D., Aristidou A., Theodoridis S.: Violence content classification using audio features. In: Hellenic Conference on Artificial Intelligence, pp. 502–507, Springer, 2006.
  • [12] Ho D.T., Garibaldi J.M.: Context-dependent fuzzy systems with application to time-series prediction, IEEE Transactions on Fuzzy Systems, vol. 22(4), pp. 778–790, 2013.
  • [13] Iancu I.: A Mamdani type fuzzy logic controller, Fuzzy logic – controls, concepts, theories and applications, pp. 325–350, 2012.
  • [14] Islam N., Hossain M.R., Anisuzzaman M., Obaidullah A.J.M., Islam S.S.: Design and Implementation of Women Auspice System by Utilizing GPS and GSM. In: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6, IEEE, 2019.
  • [15] Maerker D.: Choferes del Edomex, hartos de los robos a transporte, 2022. https://noticieros.televisa.com/videos/choferes-del-edomex-hartos-de-losrobos-a-transporte/. Last accessed 29 March 2022.
  • [16] Mills J.F., Kroner D.G., Forth A.E.: Novaco Anger Scale: Reliability and validity within an adult criminal sample, Assessment, vol. 5(3), pp. 237–248, 1998.
  • [17] Naik N., Diao R., Shen Q.: Dynamic fuzzy rule interpolation and its application to intrusion detection, IEEE Transactions on Fuzzy Systems, vol. 26(4), pp. 1878–1892, 2017.
  • [18] Nakamura A.: De paseo en la CDMX? Cuidado, estas son las zonas mas peligrosas, 2017. https://www.nacion321.com/seguridad/de-paseo-en-la-cdmxcuidado-estas-son-las-zonas-mas-peligrosas. Last accessed 27 December 2021.
  • [19] Pancardo P., Hernandez-Nolasco J.A., Wister M.A., Garcia-Constantino M.: Dynamic Membership Functions for Context-Based Fuzzy Systems, IEEE Access, vol. 9, pp. 29665–29676, 2021.
  • [20] Park H.S., Yoo J.O., Cho S.B.: A context-aware music recommendation system using fuzzy bayesian networks with utility theory. In: International Conference on Fuzzy Systems and Knowledge Discovery, pp. 970–979, Springer, 2006.
  • [21] Penet C., Demarty C.H., Gravier G., Gros P.: Audio event detection in movies using multiple audio words and contextual Bayesian networks. In: 2013 11th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 17–22, IEEE, 2013.
  • [22] Periodico Oficial, Gobierno del Estado Libre y Soberano de Mexico, 2018. http://legislacion.edomex.gob.mx/sites/legislacion.edomex.gob.mx/files/ files/pdf/gct/2018/mar204.pdf. Last accessed 20 December 2021.
  • [23] Pokorny F.B., Graf F., Pernkopf F., Schuller B.W.: Detection of negative emotions in speech signals using bags-of-audio-words. In: 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), pp. 879–884, IEEE, 2015.
  • [24] Pradeep M., Abinaya R., Anandhi S.S., Soundarya S.: Intelligent Safety System to Prevent Acid Attacks, Asian Journal of Applied Science and Technology (AJAST), vol. 1(3), pp. 243–248, 2017.
  • [25] Ramli N., Mohamad D.: A comparative analysis of centroid methods in ranking fuzzy numbers, European Journal of Scientific Research, vol. 28(3), pp. 492–501, 2009.
  • [26] Robo a Uber en Ecatepec no fue hecho por usuarios, 2018, Periodico Excelsior. https://www.excelsior.com.mx/comunidad/robo-a-uber-en-ecatepec-nofue-hecho-por-usuarios/1261100. Last accessed 11 May 2022.
  • [27] Rodellar-Biarge V., Palacios-Alonso D., Nieto-Lluis V., Gomez-Vilda P.: Towards the search of detection in speech-relevant features for stress, Expert Systems, vol. 32(6), pp. 710–718, 2015.
  • [28] Rouas J.L., Louradour J., Ambellouis S.: Audio events detection in public transport vehicle. In: 2006 IEEE Intelligent Transportation Systems Conference, pp. 733–738, IEEE, 2006.
  • [29] Santos F., Duraes D., Marcondes F.S., Hammerschmidt N., Lange S., Machado J., Novais P.: In-Car Violence Detection Based on the Audio Signal. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 437–445, Springer, 2021.
  • [30] Shulby C., Pombal L., Jordao V., Ziolle G., Martho B., Postal A., Prochnow T.: Proactive Security: Embedded AI Solution for Violent and Abusive Speech Recognition. In: 2018 7th Brazilian Conference on Intelligent Systems (BRACIS), pp. 248–253, IEEE, 2018.
  • [31] Siantikos G., Sgouropoulos D., Giannakopoulos T., Spyrou E.: Fusing multiple audio sensors for acoustic event detection. In: 2015 9th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 265–269, IEEE, 2015.
  • [32] Souza-Leal B., De-Carvalho C.A., Antunes E.: La violencia contra mujeres brasilenas en las esferas publica y mediatica, Comunicar, vol. 55, pp. 19–28, 2018. doi: 10.3916/C55-2018-02.
  • [33] Tasa de incidencia delictiva por entidad federativa de ocurrencia por cada cien mil habitantes, Instituto Nacional de Estadıstica y Geografıa, 2019. https:// www.inegi.org.mx/temas/incidencia/. Last accessed 22 December 2021.
  • [34] Taskin A., Kumbasar T.: An open source Matlab/Simulink toolbox for interval type-2 fuzzy logic systems. In: 2015 IEEE Symposium Series on Computational Intelligence, pp. 1561–1568, IEEE, 2015.
  • [35] Timmons A.C., Chaspari T., Han S.C., Perrone L., Narayanan S.S., Margolin G.: Using Multimodal Wearable Technology to Detect Conflict among Couples, Computer, vol. 50(3), pp. 50–59, 2017.
  • [36] Zhao J., Bose B.K.: Evaluation of membership functions for fuzzy logic controlled induction motor drive. In: IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, vol. 1, pp. 229–234, IEEE, 2002.
  • [37] Zhuang X., Zhou X., Hasegawa-Johnson M.A., Huang T.S.: Real-world acoustic event detection, Pattern Recognition Letters, vol. 31(12), pp. 1543–1551, 2010.
  • [38] Zieger C., Brutti A., Svaizer P.: Acoustic based surveillance system for intrusion detection. In: 2009 Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 314–319, IEEE, 2009.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9260210-dad2-4447-8ef7-005372e9a1b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.