PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement photocatalytic activity of spinel oxide (Co, Ni)3O4 by combination with carbon nanotubes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, some types of composites consisting of multi-walled carbon nanotubes (MWCNTs) and spinel oxide (Co, Ni)3 O4  were synthesized by simple evaporation method. These composites were characterized by UV–Vis diffuse reflectance spectroscopy, X-rays diffraction(XRD), Scanning electron microscopy (SEM) and specific surface area(SBET ). The photocatalytic activity of the prepared composites was investigated by the following removal of Bismarck brown G (BBG) dye from its aqueous solutions. The obtained results showed that using MWCNTs in combination with spinel oxide to produced composites (spinel/MWCNTs) which succeeded in increasing the activity of spinel oxide and exhibited higher photocatalytic activity than spinel oxide alone. Also it was found that, multiwalled carbon nanotubes were successful in increasing the adsorption and improving the activity of photocatalytic degradation of Bismarck brown G dye(BBG). The obtained results showed that spinel/MWCNTs was more active in dye removal in comparison with each of spinel oxide and MWCNTs alone under the same reaction conditions. Also band gap energies for the prepared composites showed lower values in comparison with neat spinel. This point represents a promising observation as these composites can be excited using a lower energy radiation sources.
Rocznik
Strony
61--67
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • University of Kufa, College of Science- Department of Chemistry, Iraq
autor
  • University of Babylon, College of Science-Department of Chemistry, Iraq
autor
  • University of Kufa, College of Science- Department of Chemistry, Iraq
Bibliografia
  • 1. Hussein, F.H., Halbus, A.F., Lafta, A.J. & Athab, Z.H. (2015). Preparation and Characterization of Activated Carbon from Iraqi Khestawy Date Palm. J. Chem. 1–8. http://dx.doi.org/10.1155/2015/295748.
  • 2. Falah, H.H., Ahmed, F.H., Hussein, Hassan, A.K. & WIisam, Hussein, A.K. (2010). Photocatalytic Degradation of Bismarck Brown G Using Irradiated ZnO in Aqueous Solutions. E-J. Chem. 7(2), 540–544. http://www.e-journals.net.
  • 3. Garg, V.K., Amita, M., Kumar, R. & Gupta, R. (2004). Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: a timber industry waste. Dyes Pigm. 63(3), 243–250. http://dx.doi.org/10.1016/j.dyepig.2004.03.005.
  • 4. Hussein, F.H. (2013). Chemical Properties of Treated Textile Dyeing Wastewater. Asian J. Chem. 25(16), 9393–9400. DOI: 10.14233/ajchem.2013.15909A.
  • 5. Garg, V.K., Amita, M., Kumar, R. & Gupta, R. (2004). Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian rosewood sawdust: a timber industry waste. Dyes Pigments. 63(3), 243–250. http://dx.doi.org/10.1016/j.dyepig.2004.03.005.
  • 6. Abbas, J.A., Salih, H.K. & Falah, H.H. (2008). Photocatalytic degradation of textile Dyeing wastewater using titanium dioxide and zinc oxide. E-J. Chem. 5(2), 219–223. http://www.e-journals.net.
  • 7. Robinson, T., McMullan, G., Marchant, R. & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Biores. Technol. 77(3), 247–255. DOI: 10.1016/S0960-8524(00)00080-8.
  • 8. Zamora, P., Kunz, A., Moraes, S., Pelegrini, R., Molerio, P., Reyes, J. & Duran, N. (1999). Chemosphere. Degradation of Reactive Dyes I. A Comparative Study of Ozonation, Enzymatic and Photochemical Processes. Chemosphere 38(4), 835–852. DOI: 10.1016/S0045-6535(98)00227-6.
  • 9. Ladakowicz, L., Solecka, M. & Zylla, R. (2001). Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes, J. Biotech. 89(2–3), 175–184. DOI: 10.1016/S0168-1656(01)00296-6.
  • 10. Georgiou, D., Melidis, P., Aivasidis, A. & Gimouhopoulos, K. (2002). Degradation of azo-reactive dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes Pigm. 52, 69–78. DOI: 10.1016/S0143-7208(01)00078-X.
  • 11. Farrauto, R. & Bartholomew, C. (1997). Fundamentals of Industrial Catalytic Processes, Chapman & Hall, Kluwer Academic Publishers, London.
  • 12. Pourbaix, M. (1974). Atlas of Electrochemical Equilibrium, Pergamum Press, New York, Translated from French by J.A. Franklin, USA.
  • 13. Pal, J. & Chauhan, P. (2010). Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Mater. Character. 61(5), 575–579. DOI: 10.1016/j.matchar.2010.02.017.
  • 14. Sujia, T.T., Hamagamia, T., Kawamurab, T., Yamakia, J. & Masaharu, T. (2005). Laser ablation of cobalt and cobalt oxides in liquids: influence of solvent on composition of prepared nanoparticles. Japan Appl. Surf. Sci. 243(30), 214–219. DOI: 10.1016/j.apsusc.2004.09.065.
  • 15. Alkaim, A.F., Sadik, Z., Mahdi, D.K., Alshrefi, S.M., Al-Sammarraie, A.M., Alamgir, F.M., Singh, P.M. & Aljeboree, A.M. (2015). Preparation, structure and adsorption properties of synthesized multiwall carbon nanotubes for highly effective removal of maxilon blue dye. Korean J. Chem. Eng. 32(12), 2456–2462. DOI: 10.1007/s11814-015-0078-y.
  • 16. Aljebori, A.M. & Alshirifi, A.N. (2012). Effect of Different Parameters on the Adsorption of Textile Dye Maxilon Blue GRL from Aqueous Solution by Using White Marble. Asian J. Chem. 24, 5813–5816. www.asianjournalofchemistry.co.in.
  • 17. Ren, W., Ai, Z., Jia, F., Zhang, L., Fan, X. & Zou, Z. (2007). Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl. Catal. B: Environmental 69(3–4), 138–144. http://dx.doi.org/10.1016/j.apcatb.2006.06.015.
  • 18. Yang, Z., Du, G., Meng, Q., Guo, Z., Yu, X., Chen, Z., Guo, T. & Zeng, R. (2012). Synthesis of uniform TiO2@carbon composite nanofibers as anode for lithium ion batteries with enhanced electrochemical performance. J. Mater. Chem. 22, 5848–5854. DOI: 10.1039/c2jm14852h.
  • 19. He, H.Y., Fei, J. & Lu, J. (2015). High photocatalytic and photo-Fenton-like activities of ZnO-reduced graphene oxide nanocomposites in the degradation of malachite green in water. Micro and Nano Lett. 10(8), 389–394. DOI: 10.1049/mnl.2014.0551.
  • 20. Shen, J., Yan, B., Shi, M. & Mingxin, Y. (2011). One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. J. Mater. Chem. 21(10), 3415–3421. DOI: 10.1039/C0JM03542D.
  • 21. Abdulrazzak, F.H. (2016). Enhance photocatalytic Activity of TiO2 by Carbon Nanotubes. Inter. J. Chem. Tech. Res. 9(3), 431–443. www.sphinxsai.com
  • 22. Salam, M.A., El-Shishtawy & Obaid, R.M.A.Y. (2014). Synthesis of magnetic multi-walled carbon nanotubes/magnetite/chitin magnetic nanocomposite for the removal of Rose Bengal from real and model solution. J. Ind. Enginee. Chem. 20(5), 3559–3567. DOI: 10.1016/j.jiec.2013.12.049.
  • 23. Gupta, V.K., Agarwal, S. & Saleh, T.A. (2011). Synthesis and characterization of alumina-coated carbon nanotubes and their application for lead removal. J. Hazard. Mater. 185(1), 17–23. DOI:10.1016/j.jhazmat.2010.08.053.
  • 24. Dervishi, E., Watanabe, F., Xu, Y., Saini, V., Biris, A.R. & Biris, A.S. (2009). Thermally controlled synthesis of single-wall carbon nanotubes with selective diameters. J. Mat. Chem. 19(19), 3004–3012. DOI: 10.1039/b822469b.
  • 25. Yao, Y., Li, G., Ciston, S., Lueptow, R.M. & Gray, K.A. (2008). Photoreactive TiO2/Carbon Nanotube Composites: Synthesis and Reactivity. Environ. Sci. Technol. 42(13), 4952–4957. DOI: 10.1021/es800191n.
  • 26. Manafi, S., Nadali, H. & Irani, H.R. (2008). Low temperature synthesis of multi-walled carbon nanotubes via a sonochemical/hydrothermal method. Mater. Lett. 62(26), 4175–4176. http://dx.doi.org/10.1016/j.matlet.2008.05.072.
  • 27. Sun, Z., Zhang, X., Liu, Z., Han, B. & An, G. (2006). Synthesis of ZrO2-Carbon Nanotube Composites and Their Application as Chemiluminescent Sensor Material for Ethanol. J. Phys. Chem. B. 110(27), 13410–13414. DOI: 10.1021/jp0616359.
  • 28. Hussein, F.H., Obies, M.H. & Abed, A.A. (2010). Photocatalytic Decolorization of Bismarck Brown R by Suspension of Titanium Dioxide. Int. J. Chem. Sci. 8(4), 2736–2746. https://www.researchgate.net/publication/299595106.
  • 29. Opalińska, A., Malka, I., Dzwolak, W., Chudobe, T., Presz, A., Lojkowski, W. & Ron, N. (2015). Size-dependent density of zirconia nanoparticles. Beil. J. Nanotech. 2015; 6: 27–35. DOI: 10.3762/bjnano.6.4.
  • 30. Zhenyu, S., Xinrong, Z., Zhimin, L., Buxing, H. & Guimin, A. (2006). Synthesis of ZrO2–Carbon Nanotube Composites and Their Application as Chemiluminescent Sensor Material for Ethanol. J. Phys. Chem. B 110(27), 13410–13414. DOI: 10.1021/jp0616359.
  • 31. Karam, F.F., Kadhim, M.I. & Alkaim, A.F. (2015). Optimal conditions for synthesis of 1, 4-naphthaquinone by photocatalytic oxidation of naphthalene in closed system reactor, Int. J. Chem. Sci. 13, 650–660. www.sadgurupublications.com.
  • 32. Alkaim, A.F., Dillert, R. & Bahnemann, D.W. (2015). Effect of polar and movable (OH or NH2 groups) on the photocatalytic H2 production of alkyl-alkanolamine: a comparative study. Environ. Technol. 36(17), 2190–2197. DOI: 10.1080/09593330.2015.1024757.
  • 33. Šíma, J. & Hasal, P. (2013). Photocatalytic Degradation of Textile Dyes in aTiO2/UV System. Chem. Enginee. Trans. 32, 80–84. DOI: 10.3303/CET1332014.
  • 34. Kandiel, T.A., Robben, L., Alkaim, A. & Bahnemann, D. (2013). Brookite versus anatase TiO2 photocatalysts: phase transformations and photocatalytic activities. Photochem. Photobiol. Sci. 12(4), 602–609. DOI: 10.1039/c2pp25217a.
  • 35. Zhen, L., Shan, C., & Yiming, X. (2014). Brookite vs Anatase TiO2 in the Photocatalytic Activity for Organic Degradation in Water. ACS Catal. 4(9), 3273–3280. DOI: 10.1021/cs500785z.
  • 36. Mohammad, E.J., Lafta, A.J., & Kahdim, S.H. (2016). Photocatalytic removal of reactive yellow 145 dye from simulated textile wastewaters over supported (Co, Ni)3O4/Al2O3 co-catalyst. Pol. J. Chem. Technol 18(3), 1–8. DOI: 10.15P1o5l/.pjJc.t-C2h0e1m6-.00T4ec1h.
  • 37. Wepasnick, K.A., Smith, B.A., Schrote, K.E., Wilson, H.K., Diegelmann, S.R. & Fairbrother, D.H. (2011). Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon. 49(1), 24–36. DOI: 10.1016/j.carbon.2010.08.034.
  • 38. Wang, W., Serp, P., Kalck, P. & Faria, J.L. (2005). Visible light Photodegradation of Phenol on MWNT-TiO2 Composite Catalysts Prepared by a Modified Sol-gel Method. J. Molec. Catal. A. Chem. 235(1), 194–199. DOI: 10.1016/j.molcata.2005.02.027.
  • 39. Wepasnick, K.A., Smith, B.A. & Fairbrother, D.H. (2011). Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49(1), 24–36. DOI: 10.1016/j.carbon.2010.08.034.
  • 40. Akhavan, O., Azimirad, R., Safa, S. & Larijani, M. (2010). Visible light photo-induced antibacterial activity of CNT-doped TiO2 thin films with various CNT contents. J. Mater. Chem. 20(35), 7386–7392. DOI: 10.1039/C0JM00543F.
  • 41. Sanchai, K. & Hang, H. (2011). Study of NiO-CoO and Co3O4-Ni3O4 Solid Solutions in Multiphase Ni-Co-O Systems. Ind. Enginee. Chem. Res. 50(4), 2015–2020. DOI: dx.doi.org/10.1021/ie101249r.
  • 42. Xie, Y.,. Heo, S., Yoo, H., Ali, G. & Cho, S. (2010). Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes. Nanoscale Res. Lett. 5, 603–607. DOI: 10.1007/s11671-009-9513-5.
  • 43. Liu, G., Yan, X., Chen, Z., Wang, X., Wang, L., Lu, G. & Cheng, H. (2009). Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis. J. Mater. Chem. 19, 6590–6596. DOI: 10.1039/B902666E.
  • 44. Matos, J., Laine, J. & Herrmann, J.M. (1998). Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon. Appl. Catal. B: Environmental, 18, 281–291. DOI: 10.1007/s11356-014-2832-9.
  • 45. Slimen, H., Lachheb, H., Qourzal, S., Assabbane, A. & Houas, A. (2015). The effect of calcination atmosphere on the structure and photoactivity of TiO2 synthesized through an unconventional dopingusing activated carbon. J. Environ. Chem. Enginee. 3(2), 922–929. DOI: 10.1016/j.jece.2015.02.017.
  • 46. Chen, W., Fan, Z., Zhang, B., Ma, G., Takanabe, K., Zhang, X. & Lai, Z. (2011). Enhanced visible-light activity of titania via confinement inside carbon nanotubes. J. Am. Chem. Soc. 133(38), 14896–14899. DOI: 10.1021/ja205997x.
  • 47. Vajda, K., Mogyorosi, K., Nemeth, Z., Hernadi, K., Forro, L., Magrez, A. & Dombi, A. (2011). Photocatalytic activity of TiO2/SWCNT and TiO2/MWCNT nano composites with different carbon nanotube content. Phys. Stat. Sol. B. 248(11), 2496–2499. DOI: 10.1002/pssb.201100117.
  • 48. Naseri, M.G., Saion, E.B., Ahangard, H.A., Hashim, M. & Shaari, A.H. (2011). Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method. Powder Technol. 212(1), 80–88. DOI: 10.1016/j.powtec.2011.04.033.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9245af2-5bc8-4d35-a505-be606b753467
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.