PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical and metallurgical properties of GTAW dissimilar welds between SUS304 and SA213T11 using ER308 filler metal, preliminary study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dissimilar welding between austenitic stainless steel SUS304 and low alloy ferritic steel SA213T11 is widely used in the petrochemical and power generation industries because this combination is suitable for use in corrosive and high-temperature environments. This study presents a preliminary investigation of dissimilar metal welding between austenitic stainless steel SUS304 and low-alloy steel SA213T11 using Gas Tungsten Arc Welding (GTAW) with ER308 filler metal. The mechanical and metallurgical properties of the welded joints were evaluated through hardness testing, tensile testing, bend testing, and microstructural analysis. The results show that the welds produced are of acceptable quality, with sound bead appearance and no visible surface defects. Hardness values vary across different weld regions, with the weld zone exhibiting higher hardness due to the presence of δ-ferrite. Tensile tests indicate that the weld strength is comparable to or greater than the weaker base metal, and failure occurs outside the weld region. Microstructural observations reveal significant changes in the heat-affected zones and weld metal, influenced by the thermal cycle and filler composition. These findings provide insight into the performance of ER308 in joining dissimilar metals, which is relevant for applications in power and petrochemical industries.
Twórcy
  • Doctoral Program-School of Engineering, Universitas Syiah Kuala, Jl. Tgk. Chik Pante Kulu No. 5 Komplek Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Mechanical Engineering, Politeknik Negeri Lhokseumawe, Jl. Banda Aceh-Medan KM. 280 Buketrata, Lhokseumawe 24301, Indonesia
  • Doctoral Program-School of Engineering, Universitas Syiah Kuala, Jl. Tgk. Chik Pante Kulu No. 5 Komplek Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Department of Mechanical Engineering, Universitas Syiah Kuala, Jl. Syech Abdurrauf No.7 Darussalam, Banda Aceh 23111, Indonesia
autor
  • Department of Capture Fisheries, Marine and Fisheries Faculty, Universitas Syiah Kuala, Jl. Putro Phang, Darussalam, Banda Aceh 23111, Indonesia
autor
  • National Research and Innovation Agency of Indonesia, Jl. Hidrodinamika, Sukolilo, Surabaya 60112, Indonesia
  • National Research and Innovation Agency of Indonesia, Jl. Raya Puspitek Kawasan Sains dan Teknologi KST BJ. Habibie, Serpong, Gedung 220, Setu, Tangerang Selatan 15314, Indonesia
Bibliografia
  • 1. Committee of Stainless Steel Producers. The Role Stainless Steel in Industrial Heat Exchangers. Stainl. Steel Ind. Data. 2006; 8. Available from: https://www.nickelinstitute.org/~/media/Files/Technical-Literature/RoleofStainlessSteelsinIndustrialHeat-Exchangers_9005.ashx.
  • 2. Agreement L, Material W. Inherently Reliable Boiler. Manager. 2006; 3(3).
  • 3. Chandrasekaran K., Kumar P. R., Ramanathan R., Chandradass J., Kannan T. T. M., and Rajan A. J. Characteristic analysis of dissimilar metal weld for AISI304 with SA213T22 in super heater coils, Mater. Today Proc., 2021; 45, 6788–6793. https://doi:10.1016/j.matpr.2020.12.671.
  • 4. Arivarasan J. and Kannan T. D. B. Mechanical and metallurgical characterisation of double pulse mig welded in 617-Ss 304 H, Adv Mater Process Technol, 2023; 1–25.
  • 5. Li X., Nie J., Wang X., Li K., and Zhang H. Failure analysis of dissimilar metal welds between ferritic heat resistant steels and austenitic stainless steels in power plant, Chinese J. Mech. Eng., 2024; 37(1): 76.
  • 6. Al Hajri M., Malik A. U., Meroufel A., and Al-Muaili F. Premature failure of dissimilar metal weld joint at intermediate temperature superheater tube, Case Stud. Eng. Fail. Anal., 2015; 3: 96–103. https://doi:10.1016/j.csefa.2015.03.006.
  • 7. A. I., S. Institute. Welding of Stainless Steels and Other Joining Methods - A Designers’ Handbook Series. 1988; 6: 11.
  • 8. Gandy D. The Grades 11 and 12 Low Alloy Steel Handbook 1¼Cr½Mo, 1Cr½Mo, 13CrMo44. 2007; 3(3). Available from: www.epri.com.
  • 9. Avery RE. Guidelines for welding dissimilar metals. Am Inst Chem Eng. 1991; May.
  • 10. Shravan C., Radhika N., Deepak Kumar N. H., and Sivasailam B. A review on welding techniques: properties, characterisations and engineering applications, Adv. Mater. Process. Technol., 2023; 10(2): 1126–1181. https://doi:10.1080/2374068X.2023.2186638.
  • 11. Rathod D. W., Pandey S., Singh P. K., and Prasad R. Mechanical properties variations and comparative analysis of dissimilar metal pipe welds in pressure vessel system of nuclear plants, J. Press. Vessel Technol., 2016; 138(1): 11403. https://doi:10.1115/1.4031129.
  • 12. Chen Z. R., Lu Y. H., Ding X. F., and Shoji T. Microstructural and hardness investigations on a dissimilar metal weld between low alloy steel and Alloy 82 weld metal, Mater. Charact., 2016; 121: 166–174. https://doi:10.1016/j.matchar.2016.09.033.
  • 13. Handbook M. Welding, brazing, and soldering. 1993; 6: 322.
  • 14. Sharma P. and Dwivedi D. K. Enhancing mechanical properties of dissimilar steel A-TIG weld joint by in-situ induction post-heating, Manuf. Lett. 2024; 42: 30–3.
  • 15. Chuaiphan W. and Srijaroenpramong L. Optimization of gas tungsten arc welding parameters for the dissimilar welding between AISI 304 and AISI 201 stainless steels, Def. Technol., 2019; 15(2): 170–178. https://doi:10.1016/j.dt.2018.06.007.
  • 16. Afrox. Afrox Product Reference Manual - Welding Consumables - Stainless Steel. 2017; 1–21.
  • 17. He Y. and Xing Z. Investigations on the microstructure, mechanical properties and corrosion resistance of SUS 304 austenitic stainless steel welded joints by pulsed current gas tungsten arc welding, Mater. Res. Express, 2019; 6(8): 88001. https://doi:10.1088/2053-1591/ab1b85.
  • 18. Gupta A., Singh J., and Chhibber R. Dissimilar welding of austenitic and ferritic steels using nickel and stainless-steel filler: Associated issues, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., 2024; 238(5): 2524–2544. https://doi:10.1177/09544089231159776.
  • 19. Asadollahi A., Bahrami A., and Shamanian M. The effects of filler metal and butter layer on the microstructure and mechanical properties of API 5L X65/AISI 304L joint, J. Mater. Res. Technol., 2023; 23: 4148–4166. https://doi:10.1016/j.jmrt.2023.02.063.
  • 20. Khan M., Dewan M. W., and Sarkar M. Z. Effects of welding technique, filler metal and post-weld heat treatment on stainless steel and mild steel dissimilar welding joint, J. Manuf. Process., 2021; 64: 1307–1321. https://doi:10.1016/j.jmapro.2021.02.058.
  • 21. Sun Y. L. et al. Effects of dilution on alloy content and microstructure in multi-pass steel welds, J. Mater. Process. Technol., 2019; 265: 71–86. https://doi:10.1016/j.jmatprotec.2018.09.037.
  • 22. Kah P., Shrestha M., and Martikainen J. Trends in joining dissimilar metals by welding, Appl. Mech. Mater., 2014; 440: 269–276. https://doi:10.4028/www.scientific.net/AMM.440.269.
  • 23. Ramakrishnan P. Welding Metallurgy. 1972; 4(3). https://doi:10.22486/iwj.v4i3.150243.
  • 24. Sonar T. et al. A critical review on dissimilar welding of ferritic-martensitic steel and austenitic stainless steel using gas tungsten arc welding process: Weldability issues, processing, and performance characteristics of joints, J. Manuf. Process., 2025; 133: 811–864. https://doi:10.1016/j.jmapro.2024.11.081.
  • 25. Alcantar-Modragón N., García-García V., Reyes-Calderón F., Villalobos-Brito J. C., and Vergara-Hernández H. J. Study of cracking susceptibility in similar and dissimilar welds between carbon steel and austenitic stainless steel through finger test and FE numerical model, Int. J. Adv. Manuf. Technol., 2021; 116: 2661–2686. https://doi:10.1007/s00170-021-07596-0.
  • 26. Lee S. H. A hot cracking on dissimilar metal weld between A106Gr. B and A312 TP316L with buttering ERNiCr-3, Metals (Basel)., 2019; 9(5): 533. https://doi:10.3390/met9050533.
  • 27. Santosh R., Das G., Kumar S., Singh P. K., and Ghosh M. Experimental and computational investigation of structural integrity of dissimilar metal weld between ferritic and austenitic steel, Metall. Mater. Trans. A, 2018; 49(6): 2099–2112. https://doi:10.1007/s11661-018-4554-y.
  • 28. Li S., Li J., Sun G., and Deng D. Modeling of welding residual stress in a dissimilar metal butt-welded joint between P92 ferritic steel and SUS304 austenitic stainless steel, J. Mater. Res. Technol., 2023; 23: 4938–4954.
  • 29. Singh D. K., Sahoo G., Basu R., Sharma V., and Mohtadi-Bonab M. A. Investigation on the microstructure—mechanical property correlation in dissimilar steel welds of stainless steel SS 304 and medium carbon steel EN 8, J. Manuf. Process., 2018; 36: 281–292. https://doi:10.1016/j.jmapro.2018.10.018.
  • 30. Osoba L. O., Ekpe I. C., and Elemuren R. A. Analysis of dissimilar welding of austenitic stainless steel to low carbon steel by TIG welding process, 2015; 5(5): 1–12.
  • 31. Li X. et al. Characterization and formation mechanism of ultra-fine ferrite grains in dissimilar metal weld between austenitic stainless steel and low alloy ferritic steel, Mater. Charact., 2021; 171: 110777. https://doi:10.1016/j.matchar.2020.110777.
  • 32. Asadollahi A., Bahrami A., and Shamanian M. The effects of filler metal and butter layer on the microstructure and mechanical properties of API 5L X65/AISI 304L joint, J. Mater. Res. Technol., 2023; 23: 4148–4166. https://doi:10.1016/j.jmrt.2023.02.063.
  • 33. Asadi P., Alimohammadi S., Kohantorabi O., Fazli A., and Akbari M. Effects of material type, pre-heating and weld pass number on residual stress of welded steel pipes by multi-pass TIG welding (C-Mn, SUS304, SUS316), Thermal Sci. Eng. Prog., 2019; 16. https://doi:10.1016/j.tsep.2019.100462.
  • 34. Arivazhagan N., Singh S., Prakash S., and Reddy G. M. Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding, Mater. Des., 2011; 32(5): 3036–3050. https://doi:10.1016/j.matdes.2011.01.037.
  • 35. Wang J., Lu M. X., Zhang L., Chang W., Xu L. N., and Hu L. H. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel, Int. J. Miner. Metall. Mater., 2012; 19(6): 518–524. https://doi:10.1007/s12613-012-0589-z.
  • 36. Sonar T., Ivanov M., Trofimov E., Tingaev A., and Suleymanova I. A critical review on solid-state welding of high entropy alloys – processing, microstructural characteristics and mechanical properties of joints, Def. Technol., 2024; 34: 78–133.
  • 37. Skowrońska B., Chmielewski T., Golański D., and Szulc J. Weldability of S700MC steel welded with the hybrid plasma + MAG method, Manuf. Rev., 2020; 7: 4. https://doi.org/10.1051/mfreview/2020001.
  • 38. Rathore S. et al. Advanced ultra super critical power plants: Role of buttering layer, Int. J. Adv. Manuf. Technol., 2024; 134(11): 5021–5064.
  • 39. David S. A., Goodwin G. M., and Braski D. N. Solidification behavior of austenitic stainless steel filler metals. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); 1980.
  • 40. Guiraldenq P. and Duparc O. H. The genesis of the Schaeffler diagram in the history of stainless steel, Metall. Res. Technol., 2017; 114(6): 613. https://doi:10.1051/metal/2017059.
  • 41. Giudice F., Missori S., Scolaro C., and Sili A. A review on fusion welding of dissimilar ferritic/austenitic steels: processing and weld zone metallurgy, J. Manuf. Mater. Process., 2024; 8(3): 96. https://doi:10.3390/jmmp8030096.
  • 42. Ming H., Wang J., and Han E.-H. Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods, Mater. Charact., 2018; 139: 186–196. https://doi:10.1016/j.matchar.2018.02.044.
  • 43. Lu L., Cai Z., Yang J., Liang Z., Sun Q., and Pan J. Study on key parameters of dilution ratio of the bead deposited by GTAW method for nuclear components, Metals (Basel)., 2022; 12(9): 1506. https://doi:10.3390/met12091506.
  • 44. Mas F., Tassin C., Roch F., Yescas M., Todeschini P., and Bréchet Y. Growth morphologies and primary solidification modes in a dissimilar weld between a low-alloy steel and an austenitic stainless steel, Metals (Basel)., 2018; 8(4): 284. https://doi:10.3390/met8040284.
  • 45. Taban E., Kaluc E., and Aykan T. S. Effect of the purging gas on properties of 304H GTA welds, Weld. J., 2014; 93(4): 124–130.
  • 46. Westin E. M. and Serrander D. Experience in welding stainless steels for water heater applications, Weld. World, 2012; 56(5): 14–28. https://doi:10.1007/BF03321346.
  • 47. Bensaid N., Benlamnouar M. F., Laksir Y. L. D., Saadi T., and Badji R. Optimization of tungsten inert gas welding process parameters for joining austenitic stainless steel and copper using the Taguchi method, Adv. Sci. Technol. Res. J., 2025; 19(1): 209–219. https://doi.org/10.12913/22998624/195449.
  • 48. Gajjar P. K., Khatri B. C., and Jha R. Investigation of effect of post weld heat treatment on microhardness and microstructure of auto TIG welded stabilized SA213 TP347H weldments, Weld. Int., 2024; 38(5): 366–382.
  • 49. Kutelu B. J., Seidu S. O., Eghabor G. I., and Ibitoye A. I. Review of GTAW welding parameters, J. Miner. Mater. Charact. Eng., 2018; 6(5): 541.
  • 50. Okonkwo O., Ming H., Wang J., Meng F., Xu X., and Han E.-H. Microstructural characterization of low alloy steel A508–309/308L stainless steel dissimilar weld metals, Int. J. Press. Vessel. Pip., 2021; 190: 104297. https://doi:10.1016/j.ijpvp.2020.104297.
  • 51. Thakare J. G., Pandey C., Mahapatra M. M., and Mulik R. S. An assessment for mechanical and microstructure behavior of dissimilar material welded joint between nuclear grade martensitic P91 and austenitic SS304 L steel, J. Manuf. Process., 2019; 48: 249–259. https://doi:10.1016/j.jmapro.2019.10.002.
  • 52. Skowrońska B., Chmielewski T., and Zasada D. Assessment of selected structural properties of high-speed friction welded joints made of unalloyed structural steel, Materials (Basel)., 2022; 16(1): 93. https://doi.org/10.3390/ma16010093.
  • 53. Azwinur M. H., Usman K., Dharma S., and Akhyar. Effects of heat input on mechanical properties, microstructures and thermal conductivity of copper alloy in gas tungsten arc welding technology, Adv. Sci. Technol. Res. J., 2025; 19(6): 316–329. https://doi.org/10.12913/22998624/203367.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a921663e-82f8-4625-89a6-1fde82b9bb54
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.