PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modification of PP Fabric with Polyols by the Plasma Composite Technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to endow polypropylene (PP) fabric with hydrophilic and antistatic properties, PP was grafted with polyols (sorbitol, maltitol and polyethylene glycol (PEG)) by the oxygen plasma treatment and subsequent bridging process, where ethylene glycol diglycidyl ether (EGDE) and trimethylolpropanetris (2-methyl-1-aziridinepropionate) (TTMA) were used as crosslinkers. The highest grafting rate was 7.48%. The chemical structure changes were analysed by Fourier transform infrared spectroscopy (FTIR). A scanning electron microscope (SEM) was used to observe the changes in polypropylene fiber surface morphology. The hydrophilicity was characterized by testing loose fiber suspension and moisture retention. The modified PP was more easily immersed in water and the desorption behaviour continued for 2h without equilibrium. The half-life of the grafted PP was reduced to 7s. The results showed that the modified PP with polyols possessed hydrophilicity and antistatic properties.
Rocznik
Strony
90--98
Opis fizyczny
Bibliogr. 50 poz., rys. tab.
Twórcy
autor
  • Hohhot City, Inner Mongolia 010080, China
autor
  • Hohhot City, Inner Mongolia 010080, China
autor
  • Hohhot City, Inner Mongolia 010080, China
Bibliografia
  • 1. Rabiei N, Kish MH, Amirshahi SH, Radjabian M. The Kinetic and Thermodynamic Parameters of Dyeing of Polypropylene/Clay Composite Fibers Using Disperse Dye. Dyes & Pigments 2012; 94(3): 386-92.
  • 2. Zhang CH, Yang Fl, Wang WJ, Chen B. Preparation and Characterization of Hydrophilic Modification of Polypropylene Non-woven Fabric by Dip-coating PVA (Polyvinyl Alcohol). Separation & Purification Technology 2008; 61(3): 276- 86.
  • 3. Liu K, Zhou NY, Xie CX, Mou B, Ai YN. Design Dopamine-modified Polypropylene Fibers Towards Removal of Heavy Metal Ions from Water. AIP Advances 2017; 7(4): 1-8. DOI: 10.1063/1.49799 25.
  • 4. Lee KW, Mccarthy TJ. Surface-selective Hydroxylation of Polypropylene. Macromolecules 1988; 21(2): 309-13.
  • 5. Ren X, Liu PZ, Lee ML. Cellulose Modified Polypropylene Hollow Fibers for Capillary Electrophoresis. Journal of Microcolumn Separations 1996; 8(8): 529-534.
  • 6. Jiang G, Hu R, Wang X, Xi X, Wang R, Wei Z, et al. Preparation of Superhydrophobic and Superoleophilic Polypropylene Fibers with Application in Oil/Water Separation. Journal of the Textile Institute Proceedings & Abstracts 2013; 104(8): 790-7. DOI: 10.1080/00405000.2012.757008.
  • 7. Carlsson DJ, Clark F, Wiles DM. The Photo-Oxidation of Polypropylene Monofilaments3 Part I: Chemical Changes and Mechanical Deterioration. Textile Research Journal 1976; 46(8): 590-9. DOI: 10.1177/004051757604600806.
  • 8. Dorey S, Gaston F, Marque S, Bortolotti B, Dupuy N. XPS Analysis of PE and EVA Samples Irradiated at Different γ-doses. Applied Surface Science 2017; 427 (pt.b): 966-72.
  • 9. Payamara J, Shahidi S, Ghoranneviss M, Wiener J, Anvari A. Effect of Electron Irradiation on Dye and Printability of Polypropylene (PP) Fabrics: a Novel Method for Decoration of PP Fabrics. The Journal of The Textile Institute 2010; 101(11): 988-95. DOI: 10.1080/00405000903083278.
  • 10. Kim MS, Khang G, Hai BL. Gradient Polymer Surfaces for Biomedical Applications. Progress in Polymer Science 2008; 33(1): 138-64.
  • 11. Shahidi S, Ghoranneviss M. Comparison Between Oxygen and Nitrogen Plasma Treatment on Adhesion Properties and Antibacterial Activity of Metal Coated Polypropylene Fabrics. Fibers and Polymers 2012; 13(8): 971-8. DOI: 10.1007/s12221-012 -0971-5.
  • 12. Zille A, Oliveira FR, Souto AP. Plasma Treatment in Textile Industry. Plasma Processes and Polymers. 2015; 12(2): 98-131.
  • 13. Garcia D, Fenollar O, Lopez R, Sanchis R, Balart R. Durability of the Wettability Properties of a Polypropylene Film with a Low-pressure CH4-O2 Plasma Treatment. Journal of Applied Polymer ence 2008; 110(2): 1201 -7.
  • 14. Sciarratta V, Vohrer U, Hegemann D, Müller M, Oehr C. Plasma Functionalization of Polypropylene with Acrylic Acid. Surface & Coatings Technology 2003; 174 (none): 805-10. DOI: 10.1016/ S0257-8972(03)00564-4.
  • 15. Liu ZM, Xu ZK, Wan LS, Wu J, Ulbricht M. Surface Modification of Polypropylene Microfiltration Membranes by the Immobilization of Poly (N-vinyl-2-pyrrolidone): A Facile Plasma Approach. Journal of Membrane Science 2004; 249(1): 21-31.
  • 16. Hua X, Zhang T, Ren J, Zhang Z, Ji Z, Jiang X, et al. A Facile Approach to Modify Polypropylene Flakes Combining O2-plasmaTreatment and Graft Polymerization of l -lactic Acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010; 369(1): 128-135.
  • 17. Abednejad AS, Amoabediny G, Ghaee A. Surface Modification of Polypropylene Membrane by Polyethylene Glycol Graft Polymerization. Materials Science & Engineering C 2014; 42(sep.): 443-50.
  • 18. Hirotsu T. Effects of Oxygen Exposure on Plasma Graft Polymerization of Some Hydrophilic Monomers onto Polypropylene Films. Journal of Macromolecular Science, Part A 1996; 33(11): 1663-74. DOI: 10.1080/10601329608010931.
  • 19. Lin W, Hsieh YL. Ionic Absorption of Polypropylene Functionalized by Surface Grafting and Reactions. Journal of Polymer Science Part A Polymer Chemistry 1997; 35(4): 631-42.
  • 20. Bratskaya S, Marinin D, Nitschke M, Pleul D, Schwarz S, Simon F. Polypropylene Surface Functionalization with Chitosan. Journal of Adhesion Science & Technology 2004; 18(10): 1173-86.
  • 21. Tsou CH, Yao WH, Hung WS, Suen MC, De Guzman M, Chen J, et al. Innovative Plasma Process of Grafting Methyl Diallyl Ammonium Salt onto Polypropylene to Impart Antibacterial and Hydrophilic Surface Properties. Industrial & Engineering Chemistry Research 2018; 57(7): 2537-45.
  • 22. Wu Y, Han C, Yang J, Jia S, Wang S. Polypropylene Films Modified by Air Plasma and Feather Keratin Graft. Surface & Coatings Technology 2011; 206(2-3): 506-10.
  • 23. Ma WX, Li YG, Pu C, Wu YL. Immobilization of Functional Biomolecules onto Polypropylene Fabric Using Plasma Pre-treatment. Journal of Engineered Fibers and Fabrics 2020; 15(6): DOI: 10.1177/1558925020 978651. Polymers 2012; 13(8): 971-8. DOI: 10.1007/s12221-012 -0971-5.
  • 24. Kathavarayan T, Je YY. Enhanced Solubility of Piperine Using Hydrophilic Carrier-based Potent Solid Dispersion Systems. Drug Development and Industrial Pharmacy 2017; 43(9): 1-32. DOI:10.1080/03639045.2017.1321658.
  • 25. Jahangiri A, Møller AH, Danielsen M, Madsen B, Joernsgaard B, Vaerbak S, et al. Hydrophilization of Bixin by Lipase-catalyzed Transesterification with Sorbitol. Food Chemistry 2018; 268(DEC.1): 203-9.
  • 26. Renuka R, Ziad ER. Polar Silica-based Stationary Phases. Part II- Neutral Silica Stationary Phases with Surface Bound Maltose and Sorbitol for Hydrophilic Interaction Liquid Chromatography. Journal of Chromatography A 2017; 1508: 24-32.
  • 27. Peng B, Li Y, Yang J. Evaluation of Specific Volume, Texture, Thermal Features, Water Mobility, and Inhibitory Effect of Staling in Wheat Bread Affected by Maltitol. Food Chemistry 2019; 283(JUN.15): 123-130.
  • 28. Rice T, Zannini E, Arendt EK, Coffey A. A Review of Polyols – Biotechnological Production, Food Applications, Regulation, Labeling and Health Effects. Critical Reviews in Food Science and Nutrition 2019(3): 1-18. DOI:10.1080/10408398.2019.1625859.
  • 29. Vigo TL, Bruno JS. Improvement of Various Properties of Fiber Surfaces Containing Crosslinked Polyethylene Glycols. Journal of Applied Polymer Science 1989; 37(2): 371-9.
  • 30. Takke V, Behary N, Perwuelz A, Campagne C. Surface and Adhesion Properties of Poly(Ethylene Glycol) on Polyester(Polyethylene Terephthalate) Fabric Surface: Effect of Air‐atmospheric Plasma Treatment. Journal of Applied Polymer Science 2011; 122(4): 2621-9.
  • 31. Kolate A, Baradia D, Patil S, Vhora I, Kore G, Misra A. PEG — A Versatile Conjugating Ligand for Drugs and Drug Delivery Systems. Journal of Controlled Release 2014; 192: 67-81.
  • 32. Pasad DM, Beck KR, Vail SL. Influence of Reagent Residues and Catalysts on Formaldehyde Release from DMDHEUtreated Cotton. Journal of Applied Polymer Science 1987; 34(2): 549-58.
  • 33. El-tahlawy KF, El-bendary MA, Elhendawy AG, Hudson SM. The Antimicrobial Activity of Cotton Fabrics Treated with Different Crosslinking Agents and Chitosan. Carbohydrate Polymers 2005; 60(4): 421-30.
  • 34. Lewis DM, Zhao X, Tapley KN. A New Agent for Cotton Durable Press Finishing under Alkaline Conditions. Aatcc Review. 2002; 2(9): 38-41.
  • 35. Tian H, Zhai Y, Xu C, Liang J. Durable Antibacterial Cotton Fabrics Containing Stable Acyclic N-Halamine Groups. Industrial & Engineering Chemistry Research 2017: acs.iecr. 7b00863.
  • 36. Saffari M, Khoddami A, Mallakpour S. The Effect of a Novel Booster (Bisulfate Adduct of Polyisocyanate) on Fluorocarbon Chain Re-orientation and Substrate Properties: Synthesis and finishing. Progress in Organic Coatings 2015; 78: 261-4.
  • 37. Yao J, Lewis DM. Covalent Fixation of Hydroxyethyl Sulphone Dye on Cotton by the Use of Crosslinking Agent Via a Padbatch Process. Coloration Technology 2010; 116 (7-8): 198-203.
  • 38. Dehabadi VA, Buschmann HJ, Gutmann JS. Durable Press Finishing of Cotton Fabrics: An overview. Textile Research Journal. 2013; 83(18): 1974-1995.
  • 39. Zeeman R, Dijkstra PJ, Wachem PBv, Luyn M, Fe Ijen J. Successive Epoxy and Carbodiimide Cross-linking of Dermal Sheep Collagen. Biomaterials 1999; 20 (10): 921-31.
  • 40. Jung S, Kang S, Kuwabara J, Yoon HJ. Aziridine-based Polyaddition, Postmodification, and Crosslinking: Can Aziridine Rival Epoxide in Polymer Chemistry? Polymer Chemistry 2019; 33(10): 4506- 4512.
  • 41. Sweeney JB. Aziridines: Epoxides’ Ugly Cousins? Chemical Society Reviews 2002; 31(5): 247-58.
  • 42. Robinson MWC, Buckle R, Mabbett I, Grant GM, Graham AE. Mesoporous Aaluminosilicate Promoted Alcoholysis of Epoxides. Tetrahedron Letters 2007; 48(42): 4723-4725.
  • 43. Kurmaev EZ, Shin S, Watanabe M, Eguchi R, Ishiwata Y, Takeuchi T, et al. Probing Oxygen and Nitrogen Bonding Sites in Chitosan by X-ray Emission. Journal of Electron Spectroscopy & Related Phenomena 2002; 125(2): 133-8.
  • 44. Li XQ, Tang RC, Teramoto N. Crosslinked and Dyed Chitosan Fiber Presenting Enhanced Acid Resistance and Bioactivities. Polymers 2016; 8(4): 119.
  • 45. Vandencasteele N. Surface Treatment with Atmospheric Plasma. Adhesives & Sealants Industry 2020; 27(1): 20-5.
  • 46. Mrsic I, Buerle T, Ulitzsch S, et al. Oxygen Plasma Surface Treatment of Polymer Films—Pellethane 55DE and EPR-g-VTMS. Applied Surface Science 2021; 536: 147782.
  • 47. Elçi Ölçenoğlu G, Saka C. Surface Modification of Coal Sample with Oxygen Plasma Treatment. Surface Engineering 2020; 36(5): 531-8.
  • 48. Wei P, Lou H, Xu X. Preparation of PP Non-woven Fabric with Good Heavy Metal Adsorption Performance Via Plasma Modification And Graft Polymerization. Applied Surface Science 2021; 539: 148195.
  • 49. Ma W X, Zhao C , Okubayashi S, et al. A Novel Method of Modifying Poly(ethylene terephthalate) Fabric Using Supercritical Carbon Dioxide. Journal of Applied Polymer Science 2010; 117(4): 1897- 1907.
  • 50. Qla B, Nan Z C, Ln A, et al. One-pot High Efficiency Low Temperature Ultrasonicassisted Strategy for Fully Bio-based Coloristic, Anti-pilling, Antistatic, Bioactive and Reinforced Cashmere Using Grape Seed Proanthocyanidins. Journal of Cleaner Production 2021; 315: 128148.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9212ea1-d2e7-4d79-a615-ba56da91a73e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.