PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Design and implementation of a universal inverter for supplying AC and DC electric motors

Treść / Zawartość
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering (15-16.04.2019 ; Poznań, Polska)
Języki publikacji
EN
Abstrakty
EN
In the paper the novel universal motor driver using three different modulation method of output waveform has been presented and discussed. It should be noted that in today’s world, most of driver of electrical motors are consist of four or six transistors forming appropriate bridges. Appling specified modulation methods enable to drive both single- and three-phase induction and synchronous motors of any kind. The construction of typical transistor bridge that consists of six transistors can be also used to control the direct current motors by switching off one of the pairs of transistors. In this paper the process of construction of universal motor driver has been presented, in which has been implement the modified method of Sinusoidal Pulse Width Modulation (SPWM), Space Vector Pulse Width Modulation (SVPWM) and also the basic Pulse Width Modulation (PWM) for DC motors. The fundamentals of applied modulation algorithms have been discussed and basic equations have been shown. The developed motor controller has been used to power three different types of motors, single-phase induction motor, threephase induction motor and magnetoelectric DC motor. The results of the conducted research have been reported in this work.
Słowa kluczowe
Rocznik
Tom
Strony
97--107
Opis fizyczny
Bibliogr. 14 poz., rys.
Twórcy
  • Poznan University of Technology
  • Poznan University of Technology
  • Poznan University of Technology
Bibliografia
  • [1] Yao D. and Dan M., A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study, IEEE Trans. Ind. App., vol. 49, no. 3, 2013.
  • [2] Reichert T., Kolar J.W. and Nussbaumer T., Stator tooth design study for bearingless exterior rotor PMSM, IEEE Trans. Ind. App., vol. 49, no. 4, 2013.
  • [3] Chae-Lim J., Young-Kyoun K. and Hur J., Optimized design of PMSM with hybrid type permanent magnet for improving performance and reliability, Proc. of IEEE Energy Conversion Congress and Exposition (ECCE), 2017, pp. 1–5, October, USA.
  • [4] Huixian L. and Shihua L., Speed control for PMSM servo system using predictive functional control and extended state observer, IEEE Trans. Ind. Electron., vol. 59, no. 2, 2012.
  • [5] Genduso F., Miceli R., Rando C. and Galluzzo G.R., Back EMF sensorless-control algorithm for high-dynamic performance PMSM, IEEE Trans. Ind. Electron., vol. 57, no. 6, 2010.
  • [6] Hongryel K., Jubum S. and Jangmyung L., A high-speed sliding-mode observer for the sensorless speed control of a PMSM, IEEE Trans. Ind. Electron., vol. 58, no. 9, 2011.
  • [7] Pietrowski W., Ludowicz W. and Wojciechowski R.M., The wide range of output frequency regulation method for the inverter using the combination of PWM and DDS, COMPEL, vol. 38, no. 4, 2019 (will be published).
  • [8] Zeliang S., Jian T., Yuhua G. and Jisan L., An efficient SVPWM algorithm with low computational overhead for three-phase inverters, IEEE Trans. Power Electron, vol. 22, no. 5, 2007.
  • [9] Zhan L., Yu W., Guojun T., Hao L. and Yunfeng Z., A novel SVPWM algorithm for five-level active neutral-point-clamped converter, IEEE Trans. Power Electron, vol. 31, no. 5, 2016.
  • [10] Yujuan L., Yun W.L., Zhongyi Q., Navid R.Z. and Zhongyuan C., SVM strategies for common-mode current reduction in transformerless current-source drives at low modulation index, IEEE Trans. Power Electron, vol. 32, no. 2, 2017.
  • [11] De Pablo S., Rey A.B., Herrero L.C. and Ruiz J.M., A simpler and faster method for SVM implementation, Proc. of 2007 European Conference on Power Electronics and Applications, 2007, 2-5 September, Denmark, Aalborg.
  • [12] Dong-Choon L. and G-Myoung L., A novel over-modulation technique for spacevector PWM inverters, IEEE Trans. Power Electron, vol. 13, no. 6, 1998.
  • [13] Plamitzer A.M., Electrical Machines, Science – Technical Publishers, Warsaw, 1992 (in Polish).
  • [14] Skvarenina T.L., The Power Electronics Handbook, CRC Press, 2001.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a91fad41-1f65-4873-9bcf-96953450b439
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.