PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The development of long-range heat transfer surfaces for marine diesel engine charge air coolers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Charge air cooling is essential for the efficient operation of marine diesel engines. This work presents the results of research on the characteristics of long-range heat transfer surfaces for marine diesel engines. Elliptical and flat-oval tubes were considered. This study was carried out using mathematical models that consisted of the equations for energy conservation, motion, continuity, and state. The RSM turbulence model was used to close the system of equations. To solve the resulting system of equations, the RANS approach was used, which was implemented in the software package Code Saturne with a free license and the SimScale cloud service. The mathematical model was verified by comparing the model results with the experimental results obtained using a prototype heat-exchange surface of a charge air cooler at a test bench. The discrepancy between the theoretical and experimental heat transfer coefficient α was ≤ 8.3%. An estimate of the compactness of smooth elliptical and flat-oval tube banks compared with round ones was carried out. A 19.6% increase in compactness was obtained for elliptical tubes and 17.5% for flat-oval tubes. Based on the profiled finning surfaces, it is possible to improve their thermohydraulic characteristics by up to 40% when using them together with elliptical tubes compared with round ones and up to 26% when using them with flat-oval tubes.
Rocznik
Strony
51--57
Opis fizyczny
Bibliogr. 16 poz., rys.
Twórcy
  • Admiral Makarov National University of Shipbuilding 9 Heroiv Ukraine Ave., 54025, Mykolayiv, Ukraine, Department of Marine Infrastructure Systems Engineering and Energy Management
  • Admiral Makarov National University of Shipbuilding 9 Heroiv Ukraine Ave., 54025, Mykolayiv, Ukraine, Department of Internal Combustion Engines, Plants and Technical Exploitation
  • Admiral Makarov National University of Shipbuilding 9 Heroiv Ukraine Ave., 54025, Mykolayiv, Ukraine, Operation of Ship’s Power Plants and Heat Power Department
Bibliografia
  • 1. ACT (2020) Charge Air Coolers. [Online] Available from: http://appliedcool.com/products/charge-air-coolers/ [Accessed: November 18, 2020].
  • 2. Bazhan, P.I. (1981) Calculation and design of diesel coolers. M.: Mashinostroyeniye.
  • 3. Bystrov, Y., Isaev, S., Kudryavtsev, N. & Leontiev, A.I. (2005) Numerical simulation of vortex intensification of heat transfer in pipe banks. St. Petersburg: Sudostroyeniye.
  • 4. Code_Saturne (2020) Introducing Code_Saturne. [Online] Available from: https://www.code-saturne.org/cms/ [Accessed: November 17, 2020].
  • 5. Dolphin Manufacturing LLC (2020) [Online] Available from: http://www.dolphinml.com/downloads/ [Accessed: November 04, 2020].
  • 6. Gaus, D. & Savicheva, Y.N. (2020) Discrete-rough Heat Exchange Surfaces. IOP Conference Series: Materials Science and Engineering 753, 042037, doi: 10.1088/1757- 899X/753/4/042037.
  • 7. Kelvion (2020) New challanges sustainably mastered. Charge air coolers. [Online] Available from// https://www. kelvion.com/products/product/charge-air-coolers// [Accessed: November 20, 2020].
  • 8. Khalatov, A. (2005) Heat transfer and fluid mechanics over surface indentations (dimples). Kyiv: National Academy of Sciences of Ukraine, Institute of Engineering Thermophysics.
  • 9. Khalatov, A., Kovalenko, G.V. & Meyris, A. (2017) Using of tubular heat exchange surfaces with dimples in the gas turbine regenerators. Thermophysics and Thermal Power Engineering 39(5), pp. 70–77.
  • 10. Kondratyuk, V., Pis’mennyi, E. & Terekh, A. (2015) Heat transfer and aerodynamics of flat-oval tube bundles with dimples. ScienceRise 11(2 (16)), pp. 10–14; doi: 10.15587/2313-8416.2015.53141.
  • 11. Kuntysh, V., Sankovich, E., Mulin, V., Piir, A. & Minnigaleev, A. (2012) Heat exchange tube. Description of the utility model to the patent BY 8250.
  • 12. Kuznetsov, V. (2020) Multi-Level Estimation of the Heat Transfer Efficiency in the Power Plants Elements. Problemele Energeticii Regionale 3(47), pp. 29–38 (in Russian).
  • 13. Significant Ships (1991–2017). The Royal Institution of Naval Architects.
  • 14. SimScale (2020) Computational Fluid Dynamics Software. [Online] Available from: https://www.simscale.com/ product/cfd/ [Accessed: 17th November 2020].
  • 15. Somwanshi, A. & Sarkar, N. (2020) Design and analysis of a hybrid air and water cooler. Engineering Science and Technology, an International Journal 23(1), pp. 101–113.
  • 16. Wong, H.Y. (1977) Handbook of Essential Formulae and Data on Heat Transfer for Engineers. London, New York: Longman.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a91f239b-0417-4235-9222-b7f25ff2047d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.