Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present study analyzes the operation length of internal forces (DDSW) understood as the length of the flow of internal forces along the shortest possible internal routes. The operation length of internal forces is determined on the basis of stresses and the given volume in the constructional space. The minimum DDSW of the structure satisfies the criterial conditions of the most rigid structure, where the potential energy of deformation and the deformation energy potential is the same in the whole volume and thus the potential gradient is zero.
Rocznik
Tom
Strony
997--1005
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Koszalin University of Technology, Raclawicka St. 15 - 17, 75-620 Koszalin, Poland
autor
- Faculty of Mechanical Engineering, Koszalin University of Technology, Raclawicka St. 15 - 17, 75-620 Koszalin, Poland
Bibliografia
- [1] Ansys version 10.0 – Theory Manual, Elan Compute Group Inc., 2003.
- [2] Bąk R. and Burczyński T. (2001): Strength of materials with elements of recognition computer. – NT, Warsaw.
- [3] Bendsøe M.P. (1989): Optimal shape design as a material distribution problem. – Structural Optimization, vol.1, pp.193-202.
- [4] Bendsøe M.P. and Kikuchi N. (1988): Generating optimal topologies in structural design using a homogenization method. – Computer Methods in Applied Mechanics and Engineering, vol.71, pp.197-224.
- [5] Fligiel M. (2009): Optimal shaping of structure of design elements such as plate. – Acta Mechanica et Automatica, vol.3, No.2, pp.22-24.
- [6] Fligiel M. (2013): Criteria of the formation of the most convenient load-bearing structure in the basic load state tension and bending. – Scientific Papers of Silesian University of Technology Gliwice, series Transport, vol.82, No.1825, pp.73-83.
- [7] Fligiel M. (2014): Forming of the most convenient bent constructional elements with a permissible strength given. – International Journal of Applied Mechanics and Engineering, vol.19, No.4, pp.831-839.
- [8] Fligiel M. (2015): Criterion quantities of the most convenient load supporting structures. – Book of Proceedings, Monography, 8 International Congress of Croatian Society of Mechanics, 29.09.2015-02.10.2015, Opatija, Croatia 2015-10-18.
- [9] Kutyłowski R. (2004): Topology optimization of continuum material. – University of Technology Press, Wroclaw.
- [10] Patyk R. and Kulakowska A. (2012): Topological optimization of the structure on the example of hake cardan shaft. – Buses: Engineering, Operation, Transport systems 5/2012, pp.380-386.
- [11] Prager W. and Taylor J.E. (1968): Problems of optimal structural design. – J. Applied Mech., vol.35, pp.102-106.
- [12] Rossow M.P. and Taylor J.E. (1973): A finite element method for the optimal design of variable thickness sheet. – AIAA Journal, vol.11, pp.1566-1569.
- [13] Steven G.P., Li Q. and Xie Y.M. (2002): Multicriteria optimization that minimizes maximum stress and maximizes stiffness. – Computers and Structures, vol.80, No.27-30, pp.2433-2448.
- [14] Tarnowski W. (2004): Modeling systems. – Koszalin University of Technology, Koszalin.
- [15] Xie Y.M. and Steven G.P. (1997): Evolutionary structural optimization. – Springer-Verlag.
- [16] Zalewski W. and Kuś S. (1995): Strength forming of design on minimum weight. – Engineering and Construction, vol.9, pp.479-483.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a91daf12-83d4-420a-a7c9-238792d5f2a0