PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Characterization of Alum Sludge from Surabaya Water Treatment Plant, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A conventional water treatment plant (WTP) typically involves coagulation-flocculation processes to remove suspended particles and colloids in raw water. The process generates a large volume of alum sludge with high aluminum content, which is discharged into a river with improper treatment. The sludge may cause a potential risk to human health, and disrupt the life of river biota. The aims of this study were to determine the physical and chemical characteristics of alum sludge from Surabaya WTP, and to compare them with those of alum sludge from other plants in Indonesia and developing countries. The alum sludge sample was obtained from the Surabaya WTP in Indonesia. The results showed that the alum sludge had a pH value of 7.47, volatile solids of 12,696 mg/L, total suspended solids of 12,511 mg/L, chemical oxygen demand (COD) 9666.7 mg/L, biochemical oxygen demand (BOD) 1082.5 mg/L, and sludge volume index 114.18 mL/g. The sludge had high aluminum and iron concentrations. The aluminum content of the sludge was 1194 mg/L, iron 515 mg/L, chromium 0.217 mg/L, and copper 0.559 mg/L. Having a BOD/COD ratio of 0.1, the alum sludge contained high level of nonbiodegradable organic matter.
Rocznik
Strony
7--13
Opis fizyczny
Bibliogr. 27 poz., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Environmental, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
Bibliografia
  • 1. Ahmad T., Ahmad K., and Alam M. 2016. Characterization of water treatment plant’s sludge and its safe disposal options. Procedia Environmental Sciences, 35, 950–955.
  • 2. APHA. 2012. Standard methods for the examination of water and wastewater 22th ed. American Public Health Association, Washington, DC.
  • 3. Asharuddin S.M., Zayadi N., Rasit W., and Othman N. 2016. Water quality characteristics of Sembrong Dam Reservoir, Johor, Malaysia. IOP Conf Ser-Mat Sci.,136 (1), 1–7.
  • 4. Babatunde A.O., and Zhao Y.Q. 2007. Constructive approaches toward water treatment works sludge management: An International review of beneficial reuses. Crit Rev Env Sci Tec, 37 (2), 129–164.
  • 5. Cherifi M., Boutemine N., Laefer D.F., and Hazourli S. 2016. Effect of sludge pH and treatment time on the electrokinetic removal of aluminum from water potabilization treatment sludge. CR Chim, 19, 511–516.
  • 6. El Rhaouat O., El Kherrati I., El khayyat F., Chiguer H., Ezziani K., Ibeda A., Fareh M., Saidi Y., El Kharim K., and Belghyti D. 2014. Physic-chemical evaluation of urban wastewater of the town of Sidi Kacem. Computational Water, Energy, and Environmental Engineering, 3, 30–35.
  • 7. Goverment Republic of Indonesia. 2001. Decree of the Goverment Regulation of Republic Indonesia No. 82/2001 concerning water quality management and water pollution control, Jakarta, Indonesia: Goverment Republic of Indonesia, 2001 (In Indonesian).
  • 8. Goverment Republic of Indonesia. 1990. Decree of the Goverment Regulation of Republic Indonesia No. 20/1990 concerning water pollution control, Jakarta, Indonesia: Goverment Republic of Indonesia, 1990. (In Indonesian).
  • 9. He C., Chen C.L., Giannis A., Yang Y., Wang J.Y. 2014. Hydrothermal gasification of sewage sludge and model compounds for renew-able hydrogen production: a review. Renew Sust Energ Rev, 39, 1127–1142.
  • 10. Hidayati D., Sulaiman N., Othman S., and Ismail B.S. 2013. Fish scale deformation analysis using scanning electron microscope: New potential biomarker in aquatic environmental monitoring of aluminum and iron contamination. AIP Conf. Proc, 1571, 563–568.
  • 11. Ippolito J.A., Barbarick K.A., and Elliott H.A. 2011. Drinking water treatment residuals: A review of recent uses. Journal of Environmental Quality, 40 (1), 1–12.
  • 12. Keeley J., Jarvis P., and Judd S.J. 2014. Coagulant recovery from water treatment residuals: A review of applicable technologies. Environ Sci Technol, 44, 2675–2719.
  • 13. Kido M., Yustiawati, Syawal M.S., Sulastri, Hosokawa T., Tanaka S., Saito T., Iwakuma T., and Kurasaki M. 2009. Comparison of general water quality of rivers in Indonesia and Japan, 12 Environ Monit Assess, 156, 317–329.
  • 14. Liu R., Zhao Y., Sibille C., and Ren B. 2016. Evaluation of natural organic matter release from alum sludge reuse in wastewater treatment and its role in P adsorption. Chem Eng J, 302, 120–127.
  • 15. Maryani D., Masduqi A., and Moesriati A. 2014. Effect of media depth and filtration rate on sand filters in decreasing turbidity and total coliform. Jurnal Teknik POMITS, 3 (2), 76–81. (In Indonesian)
  • 16. Ministry for The Environment of Republic Indonesia. 2014. State Ministry for The Environment Decree of Republic Indonesia No. 5/2014 concerning Quality Standard of Wastewater, Jakarta, Indonesia: Ministry for The Environment of Republic Indonesia, 2014. (In Indonesian)
  • 17. Mortula M., Bard S.M., Walsh M.E., and Gagnon G.A. 2009. Aluminum toxicity and ecological risk assessment of dried alum residual into surface water, Journal of Civil Engineering, 36, 127–136.
  • 18. Nair A.T. and Ahammed M.M. 2015. The reuse of water treatment sludge as a coagulant for posttreatment of UASB reactor treating urban wastewater. J. Clean. Prod, 96, 272–281.
  • 19. Palupi K., Sumengen S., Inswiasri, Agustina L., Nunik S.A., Sunarya W., and Quraisyin A. 1995. River water quality study in the vicinity of Jakarta. Water Sci and Technol, 31 (9), 17–25.
  • 20. Paul D. 2017. Research on heavy metal pollution of River Ganga: a review. Annals of Agrarian Science, 15 (2), 278–286.
  • 21. Po C.W., Hua Fu C., Hung C.P., and Fang Y. 2012. Dynamics of aluminum leaching from water purification sludge. Journal of Hazardous Materials, 217, 149–155.
  • 22. Primadipta I.W. and Titah H.S. 2017. Bioremediation of alum sludge using Aspergillus niger with adding sawdust as bulking agent. Jurnal Teknik ITS, 6 (1), 95–99. (In Indonesian)
  • 23. Razif M. and Persada S.F. 2015. The fluctuation impacts of BOD, COD and TSS in Surabaya’s Rivers to environmental impact assessment (EIA) sustainability on drinking water treatment plant in Surabaya City. International Journal of ChemTech Research, 8 (8), 143–151.
  • 24. Reddy R.G., and Zhang M. 2016. US9267214B2: Aluminum recovery process. United States Patent Application Publication.
  • 25. Siregar T.H., Priyanto N., Putri A.K., Rachmawati N., Triwibowo R., Dsikowitzky L., and Schwarzbauer J. 2016. Spatial distribution and seasonal variation of the trace hazardous element contamination in Jakarta Bay, Indonesia. Mar Pollut Bull, 110 (2), 634–646.
  • 26. Tantawy M.A. 2015. Characterization and pozzolanic properties of calcined alum sludge. Mater Res Bull, 61, 415–421.
  • 27. Zhao Y.Q., Razali, Melanie, Babatunde A.O., Yang Y., Bruen, and Michael. 2007. Reuse of aluminium-based water treatment sludge to immobilize a wide range of phosphorus contamination : Equilibrium study with different isotherm models. Separation Science and Technology, 42 (12), 2705–272.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a91d53e7-fa6c-483b-9c1c-bd3fc8d9a3f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.