Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zalecenia dotyczące struktury i sterowania rozmytego wspólnego systemu magazynowania pomiędzy autonomicznymi systemami fotowoltaicznymi
Języki publikacji
Abstrakty
At present, energy saving and renewable energies represent one of the most important axes of sientific research. One of these renewable energies is solar energy, which has two aspects: solar thermic and solar photovoltaic; this energy is highly coveted due to its availability, but the cost of this energy remains very high, specially for autonomous installations where there are storage batteries. the aim of this work is to minimise the invisible cost of storage and to promote energy saving using a connected network energy management system controlled by fuzzy logic.. There are several types of storage batteries, including batteries that are less expensive in terms of storage capacity and price (Wh/Price), such as OPZS batteries, but they cannot be used for a single consumer because their capacity is very large. In our work, we propose a collective storage structure between multiple variable loads, and each load is equipped with a photovoltaic generator that supplies the same storage bus. Fuzzy logic is used to collect information on the behaviour of loads, in other words the consumers, their compliance with the consumption instructions set in advance, as well as the degree of contribution to recharging the collective storage bus. Using mathlab simulink, we have performed a simulation of the proposed system. The result is that the program classifies the consumers and gives them a quantity of energy from the storage bus according to their class, a quantity that can be estimated using fuzzy logic. This approach can be used in a number of different ways, either by the electricity network distributors by installing collective storage buses in each utility, with multiple benefits such as the use of the storage bus as a back-up source in the event of a network failure to ensure continuity of service, energy savings, because consumers will try to save as much energy as possible in order to have a good rating and benefit from more energy in unfavourable weather conditions. It will also enable the electricity distributor to have a more smart and better-controlled grid, because consumers will respect hourly power consumption thresholds to have a better rating at all times instead of varying consumption rates on an hourly basis, as many suppliers do, to avoid consumption peaks that cause problems on the electricity network, such as voltage drops. Or co-location in a collective storage bus for off-grid installations to minimise the investment cost of the storage bus and be more respectful of the environment.
Obecnie oszczędzanie energii i odnawialne źródła energii stanowią jedną z najważniejszych osi badań naukowych. Jedną z tych odnawialnych energii jest energia słoneczna, która ma dwa aspekty: słoneczną energię cieplną i słoneczną energię fotowoltaiczną; energia ta jest bardzo pożądana ze względu na jej dostępność, ale koszt tej energii pozostaje bardzo wysoki, szczególnie w przypadku autonomicznych instalacji, w których znajdują się akumulatory. Celem tej pracy jest zminimalizowanie niewidocznych kosztów magazynowania i promowanie oszczędzania energii przy użyciu połączonego sieciowego systemu zarządzania energią kontrolowanego przez logikę rozmytą. Istnieje kilka rodzajów akumulatorów, w tym akumulatory, które są tańsze pod względem pojemności i ceny (Wh / Cena), takie jak akumulatory OPZS, ale nie można ich używać dla pojedynczego konsumenta, ponieważ ich pojemność jest bardzo duża. W naszej pracy proponujemy zbiorczą strukturę magazynowania między wieloma zmiennymi obciążeniami, a każde obciążenie jest wyposażone w generator fotowoltaiczny, który zasila tę samą magistralę magazynową. Logika rozmyta jest wykorzystywana do zbierania informacji na temat zachowania obciążeń, innymi słowy konsumentów, ich zgodności z instrukcjami zużycia ustalonymi z wyprzedzeniem, a także stopnia wkładu w ładowanie zbiorczej magistrali magazynowej. Korzystając z programu Mathlab Simulink, przeprowadziliśmy symulację proponowanego systemu. W rezultacie program klasyfikuje konsumentów i daje im ilość energii z magistrali magazynowej zgodnie z ich klasą, ilość, którą można oszacować.
Wydawca
Czasopismo
Rocznik
Tom
Strony
257--263
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Faculty of technology, University of 20 August 1955, LGMM Laboratory, Skikda, Algeria
autor
- Department of Mechanical Engineering, Faculty of technology, University of 20 August 1955, LGMM Laboratory, Skikda, Algeria
autor
- Department of Electrical Engineering,Faculty of technology, Badji Mokhtar University, Laboratory (LASA) , Annaba, Algeria
Bibliografia
- 1. MD. LEONARD, E.E.MICHAELIDES and D. MICHAELIDES, Energy storage needs for the substitution of fossil fuel power plants with renewables. Renewable Energy,145, pp. 951-962 (2020).doi: https://doi.org/10.1016/j.renene.2019.06.066
- 2. SO. AMROUCHE, D. REKIOUA, T. REKIOUA and al. Overview of energy storage in renewable energy systems. International journal of hydrogen energy, 41, 45, pp 20914-20927 (2016).doi: https://doi.org/10.1016/j.ijhydene.2016.06.243
- 3. M. UMAR, X. JI, D. KIRIKKALELI and al. The imperativeness of environmental quality in the United States transportation sector amidst biomass-fossil energy consumption and growth. Journal of Cleaner Production, 285, pp.124863 (2021).doi: https://doi.org/10.1016/j.jclepro.2020.124863
- 4. F. GUANG, Electrical energy efficiency of China and its influencing factors. Environmental Science and Pollution Research, 27, 26, pp. 32829-32841 (2020). doi: https://doi.org/10.1007/s11356-020-09486-6
- 5. Ayat Y., Badoud A.E., Mekhilef S., Gassab S. Energy management based on a fuzzy controller of a photovoltaic/fuel cell/Li-ion battery/supercapacitor for unpredictable, fluctuating, high-dynamic three-phase AC load. Electrical Engineering & Electromechanics, 2023, no. 3, pp. 66-75. doi: https://doi.org/10.20998/2074-272X.2023.3.10:
- 6. A. SHARIF, M. BHATTACHARYA, S. AFSHAN and al. Disaggregated renewable energy sources in mitigating CO2 emissions: new evidence from the USA using quantile regressions. Environmental Science and Pollution Research,28 ,41, pp.57582-57601 (2021). doi: https://doi.org/10.1007/s11356-021-13829-2
- 7. SK. BHATIA, AK. PALAI, A. KUMAR, and al. Trends in renewable energy production employing biomass-based biochar. Bioresource Technology,340, pp. 125644 ( 2021). doi: https://doi.org/10.1016/j.biortech.2021.125644
- 8. Ali Moussa M., Derrouazin A., Latroch M., Aillerie M. A hybrid renewable energy production system using a smart controller based on fuzzy logic. Electrical Engineering & Electromechanics, 2022, no. 3, pp. 46-50. doi: https://doi.org/10.20998/2074-272X.2022.3.07
- 9. A. BORETTI, Integration of solar thermal and photovoltaic, wind, and battery energy storage through AI in NEOM city. Energy and AI, 3,pp.100038(2021). doi:https://doi.org/10.1016/j.egyai.2020.100038
- 10. U. EICKER, A. COLMENAR-SANTOS, L. TERAN and al. Economic evaluation of solar thermal and photovoltaic cooling systems through simulation in different climatic conditions: An analysis in three different cities in Europe. Energy and Buildings,70, pp. 207-223 (2014). doi: https://doi.org/10.1016/j.enbuild.2013.11.061
- 11. R. DUFO-LÓPEZ, T. CORTÉS-ARCOS, JS. ARTAL-SEVIL and al. Comparison of lead-acid and li-ion batteries lifetime prediction models in stand-alone photovoltaic systems. Applied Sciences,11, 3, pp. 1099 (2021). doi: https://doi.org/10.3390/app11031099
- 12. A. KARAFİL, H. ÖZBAY, Design of Stand-Alone PV System on a Farm House in Bilecik City, Turkey. El-Cezeri,5,3,pp.909-916 (2018). doi: https://doi.org/10.31202/ecjse.352826
- 13. Latreche S., Khenfer A., Khemliche M. Sensors placement for the faults detection and isolation based on bridge linked configuration of photovoltaic array. Electrical Engineering & Electromechanics, 2022, no. 5, pp. 41-46. doi: https://doi.org/10.20998/2074-272X.2022.5.07
- 14. AM. SHAHEEN, RA. EL-SEHEIMY, G. XIONG and al. Parameter identification of solar photovoltaic cell and module models via supply demand optimizer. Ain Shams Engineering Journal, 13,4, pp. 101705 (2022). doi: https://doi.org/10.1016/j.asej.2022.101705
- 15. Y. MAHMOUD et E. EL-SAADANY, A photovoltaic model with reduced computational time. IEEE transactions on industrial electronics,62,6, pp. 3534-3544 (2014). doi: 10.1109/TIE.2014.2375275
- 16. S. KAPAT and P. KREIN. A tutorial and review discussion of modulation, control and tuning of high-performance dc-dc converters based on small-signal and large-signal approaches. IEEE Open Journal of Power Electronics, 1, pp. 339-371 (2020). doi: https://doi.org/10.1109/OJPEL.2020.3018311
- 17. H. TARZAMNI, F. ESMAEELNIA, F. TAHAMI and al, Reliability assessment of conventional isolated PWM DC-DC converters. IEEE Access,9, pp. 46191-46200 (2021). doi: https://doi.org/10.1109/ACCESS.2021.3067935
- 18. B. ZHU, HU, L. Shishi, Guanghui, and al, Low-voltage stress buck-boost converter with a high-voltage conversion gain. IEEE Access, 8, pp. 95188-95196 (2020). doi: 10.1109/ACCESS.2020.2995889
- 19. A. RAJAVEL and P. RATHINA, Fuzzy logic controller-based boost and buck-boost converter for maximum power point tracking in solar system. Transactions of the Institute of Measurement and Control,43, 4, pp. 945-957 (2021). doi: https://doi.org/10.1177/0142331220938211
- 20. B. CHANDRASEKAR, CH. NALLAPERUMAL, S. PADMANABAN and al, Non-isolated high-gain triple port DC– DC buck-boost converter with positive output voltage for photovoltaicapplications. IEEEAccess,8,pp.113649-113666, (2020). doi: 10.1109/ACCESS.2020.3003192
- 21. Tahar, Benaissa, Mahi Djillali, and Halbaoui Khaled. "Maximum Power Point Tracking under simplified sliding mode control based DC-DC boost converters." Przeglad Elektrotechniczny 97.7 (2021). doi:10.15199/48.2021.07.12
- 22. N. OBEIDI, M. KERMADI, B. BELMADAN and al, A current sensorless control of buck-boost converter for maximum power point tracking in photovoltaic applications. Energies,15,20,pp. 7811 (2022). doi: https://doi.org/10.3390/en15207811
- 23. HAMOODI, Ali N., Safwan A. HAMOODI, and Farah I. HAMEEDI. "Enhancing the Solar PV Plant Based on Incremental Optimization Algorithm." Przeglad Elektrotechniczny 2023.10 (2023).. doi:10.15199/48.2023.10.35
- 24. RB. BOLLIPO,S. MIKKILI and K. BONTHAGORLA, Hybrid, optimal, intelligent and classical PV MPPT techniques: A review. CSEE Journal of Power and Energy Systems,7,1, pp.9-33 (2020). doi: 10.17775/CSEEJPES.2019.02720
- 25. I. OWUSU-NYARKO, MA.ELGENEDY, I. ABDELSALAM and al. Modified variable step-size incremental conductance MPPT technique for photovoltaic systems. Electronics, 10, 19, pp. 2331(2021). doi: https://doi.org/10.3390/electronics10192331
- 26. Jusoh, Mohd Afifi, Muhamad Zalani Daud, and Mohd Zamri Ibrahim. "Fuzzy logic-based control strategy for hourly power dispatch of grid-connected photovoltaic with hybrid energy storage." Przeglad Elektrotechniczny 98.1 (2022). doi: https://doi.org/ 10.15199/48.2022.01.02
- 27. ZOUGGARET, Abdelhak, et al. "An Efficient Fuel Cell Maximum Power Point Tracker based on an Adaptive Neural Fuzzy Inference System." Przeglad Elektrotechniczny 99.2 (2023). doi:10.15199/48.2023.02.23
- 28. M. KOTB, M. ELMORSHEDY, H. SALAMA and al. Enriching the stability of solar/wind DC microgrids using battery and superconducting magnetic energy storage based fuzzy logic control. Journal of Energy Storage,45, pp.103751 (2022). doi: https://doi.org/10.1016/j.est.2021.103751
- 29. Z. ROUMILA, D. REKIOUA, et T. REKIOUA, Energy management based fuzzy logic controller of hybrid system wind/photovoltaic/diesel with storage battery. International Journal of Hydrogen Energy, 42, 30, pp.19525-19535 (2017). doi: https://doi.org/10.3390/en16052286
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a91b3c6f-bd2e-4572-9809-ab420c9db1ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.