PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and mechanical properties of TiC/Ti matrix composites and Ti–48Al–2Cr–2Nb alloy joints brazed with Ti–28Ni eutectic filler alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ti–48Al–2Cr–2Nb and TiC/Ti matrix composites were successfully joined using Ti–28Ni eutectic filler metal at different brazing temperatures. Microstructure and mechanical properties of the joints were systematically studied. The results showed that the joints all showed integral interfaces and the microstructures of the joints for 980 8C/15 min were detected as Ti-48Al-2Cr-2Nb/a2-Ti3Al + t3-Al3NiTi2/a2-Ti3Al/Ti(s,s) + d-Ti2Ni + TiC/Ti matrix composites. As brazing temperature increased, continuous Ti2Ni layer diminish and Ti2Ni phase became more discrete. However, a2-Ti3Al rich layer has thickened which deteriorates the properties of the joints. The highest shear strength achieved 469.5 MPa as the joint brazed at 1010 8C for 15 min. The evolution of microstructures brazed with different tem-peratures was studied and its relationship with the shear strength was also revealed in details.
Rocznik
Strony
1259--1267
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 410083, PR China
  • Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, PR China
autor
  • School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
autor
  • Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, PR China
autor
  • Key Laboratory of Air-driven Equipment Technology of Zhejiang Province, Quzhou University, Quzhou 324000, PR China
autor
  • State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 410083, PR China
autor
  • State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 410083, PR China
Bibliografia
  • [1] H. Saari, J. Beddoes, D.Y. Seo, et al., Development of directionally solidified g-TiAl structures, Intermetallics 13 (9) (2005) 937–943.
  • [2] S. Zghal, M. Thomas, S. Naka, et al., Phase transformations in TiAl based alloys, Acta Mater. 53 (9) (2005) 2653–2664.
  • [3] D. Pilone, F. Felli, A. Brotzu, High temperature oxidation behaviour of TiAl-Cr- Nb-Mo alloys, Intermetallics 43 (2013) 131–137.
  • [4] D.D. Zhu, D. Dong, C.Y. Ni, et al., Effect of wheel speed on the microstructure and nanohardness of rapidly solidified Ti- 48Al-2Cr alloys, Mater. Characterization 99 (2015) 243–247.
  • [5] Y. Liu, R. Hu, H.C. Kou, et al., A mixture of massive and feathery microstructures of Ti48Al2Cr2Nb alloy by high undercooled solidification, Mater. Characterization 100 (2015) 104–107.
  • [6] J. Guyon, A. Hazotte, E. Bouzy, Evolution of metastable a phase during heating of Ti48Al2Cr2Nb intermetallic alloy, J. Alloys Compd. 656 (2016) 667–675.
  • [7] H. Attar, S. Ehtemam-Haghighi, D. Kent, et al., Recent developments and opportunities in additive manufacturing of titanium-based matrix composites: A review, Int. J. Mach. Tools Manufacture 133 (2018) 85–102.
  • [8] B.B. Hei, K. Chang, W.H. Wu, et al., The formation mechanism of TiC reinforcement and improved tensile strength in additive manufactured Ti matrix nanocomposite, Vacuum 143 (2017) 23–27.
  • [9] C. Zhang, Z.M. Guo, F. Yang, et al., In situ formation of low interstitials Ti-TiC composites by gas-solid reaction, J. Alloys Compd. 769 (2018) 37–44.
  • [10] X.J. Zhang, F. Song, Z.P. Wei, et al., Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction, Mater. Sci. Eng. A 705 (2017) 153–159.
  • [11] H.S. Ren, H.P. Xiong, B. Chen, et al., Transient liquid phase diffusion bonding of Ti-24Al-15Nb-1Mo alloy to TiAl intermetallics, Mater. Sci. Eng. A 651 (2016) 45–54.
  • [12] Y. Wang, M. Jiao, Z.W. Yang, et al., Vacuum brazing of Ti2AlNb and TC4 alloys using Ti-Zr-Cu-Ni and Ti-Zr-Cu-Ni + Mo filler metals: Microstructural evolution and mechanical properties, Archiv. Civil Mech. Eng. 18 (2018) 546–556.
  • [13] X.G. Song, T. Zhang, Y. Feng, et al., Brazing of TiBw/TC4 composite and Ti60 alloy using TiZrNiCu amorphous filler alloy, Trans. Nonferrous Metals Soc. China 27 (2017) 2193– 2201.
  • [14] H.G. Dong, L.Z. Yu, H.M. Gao, et al., Microstructure and mechanical properties of friction welds between TiAl alloy and 40Cr steel rods, Trans. Nonferrous Met. Soc. China 24 (10) (2014) 3126–3133.
  • [15] J.W. Mao, W.J. Lu, L.Q. Wang, et al., Microstructures and mechanical properties in laser beam welds of titanium matrix composites, Sci. Technol. Weld. Join. 19 (2) (2014) 142–149.
  • [16] G.Q. Chen, G. Zhang, Q.X. Yin, et al., Microstructure evolution of electron beam welded joints of Ti-43Al-9V-0.3Y and Ti-6Al- 4 V alloys, Mater. Lett. 233 (2018) 336–339.
  • [17] J. Cao, J.L. Qi, X.G. Song, et al., Welding and Joining of Titanium Aluminides, Mater. Sci. 7 (7) (2014) 4930–4962.
  • [18] Z. Mirski, M. Rózanski, Diffusion brazing of titanium aluminide alloy based on TiAl (g), Archiv. Civil Mech. Eng. 13 (4) (2013) 415–421.
  • [19] X.G. Song, Y.X. Zhao, S.P. Hu, et al., Wetting of AgCu-Ti filler on porous Si3N4 ceramic and brazing of the ceramic to TiAl alloy, Ceram. Int. 44 (2018) 4622–4629.
  • [20] Y.X. Zhao, X.G. Song, S.P. Hu, et al., Interfacial microstructure and mechanical properties of porous-Si3N4 ceramic and TiAl alloy joints vacuum brazed with AgCu filler, Ceram. Int. 43 (13) (2017) 9738–9745.
  • [21] H.S. Ren, H.P. Xiong, B. Chen, et al., Microstructures and Mechanical Properties of Vacuum Brazed Ti3Al/TiAl Joints Using Two Ti-based Filler Metals, J. Mater. Sci. Technol. 32 (4) (2016) 372–380.
  • [22] J. Cao, X.Y. Dai, J.Q. Liu, et al., Relationship between microstructure and mechanical properties of TiAl/Ti2AlNb joint brazed using Ti-27Co eutectic filler metal, Mater. Design 121 (2017) 176–184.
  • [23] X.G. Song, J. Cao, Y.Z. Feng, Brazing high Nb containing TiAl- Nb eutectic braze alloy, Intermetallics 22 (2011) 136–141.
  • [24] X.Q. Li, L. Li, K. Hu, et al., Vacuum brazing of TiAl-based intermetallics with Ti-Zr-Cu-Ni-Co amorphous alloy as filler metal, Intermetallics 57 (2015) 7–16.
  • [25] D. Dong, D.D. Zhu, H.X. Zheng, et al., Brazing TiC/Ti matrix composite using Ti-Ni eutectic braze alloy, Vacuum 156 (2018) 411–418.
  • [26] X.G. Song, J. Cao, Y.Z. Liu, et al., Brazing high Nb containing TiAl alloy using TiNi-Nb eutectic braze alloy, Intermetallics 22 (2012) 136–141.
  • [27] Y.S. Cai, R.C. Liu, Z.W. Zhu, et al., Effect of brazing temperature and brazing time on the microstructure and tensile strength of TiAl-based alloy joints with Ti-Zr-Cu-Ni amorphous alloy as filler metal, Intermetallics 91 (2017) 35–44.
  • [28] H.W. Wang, J.Q. Qi, C.M. Zhou, et al., High-temperature tensile strengths of in situ synthesized TiC/Ti-alloy composites, Mater. Sci. Eng. A 545 (2012) 209–213.
  • [29] R.K. Shiue, S.K. Wu, Y.T. Chen, et al., Infrared brazing of Ti50Al50 and Ti-6Al- 4 V using two Ti-based filler metals, Intermetallics 16 (9) (2008) 1083–1089.
  • [30] Q.W. Qiu, Y. Wang, Z.W. Yang, et al., Microstructure and mechanical properties of TiAl alloy joints vacuum brazed with Ti–Zr–Ni–Cu brazing powder without and with Mo additive, Mater. Design 90 (2016) 650–659.
  • [31] X.G. Song, J. Cao, H.Y. Chen, et al., Brazing TiAl intermetallics using TiNi-V eutectic brazing alloy, Mater. Sci. Eng. A 551 (2012) 133–139.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a919c566-1c9c-41db-b961-1697ecef509a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.