PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of time and frequency dependent behavior of viscoelastic multi-layered reinforced composites with imperfect interfaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, a two-step homogenization strategy is developed to predict the frequency and time-dependent effective behavior of multi-layered reinforced viscoelastic composites with imperfect interfaces. In the first step, the modeling is based on the extension of a matrix formulation, initially developed for multi-layered elastic composites with perfect interfaces, to the case of multi-layered viscoelastic composites with imperfect interfaces. This extension is made by using the Laplace Carson transform to transform the linear viscoelastic constitutive law to another one analogous to the elastic one and an adapted linear spring model for viscoelastic imperfect interfaces. In the second step, the well-known Mori-Tanaka micromechanical model is used to estimate the effective behavior of each reinforced layer. The estimated effective behavior is injected into the developed matrix formulation to obtain the effective behavior of the considered multi-layered composite. The effective behavior is estimated both in the frequency and time domains. For comparison, a perfect hybrid model in which the interface is considered as an interlayer with an equivalent thickness is considered. Numerical results are presented in the frequency and time domains with respect to constituent volume fractions and imperfect interface effects. The developed approach allows one to design multi-layered viscoelastic composites taking into account the geometric and mechanical parameters of constituents.
Twórcy
  • Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
  • Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
  • National School of Applied Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
Bibliografia
  • 1. Hashin Z. Viscoelastic behavior of heterogeneous media. Journal of Applied Mechanics. 1965; 32: 630–636.
  • 2. Hashin Z. Complex moduli of viscoelastic composites-I. General theory and application to particulate composites. International Journal of Solids and Structures. 1970a; 6: 539–552.
  • 3. Hashin Z. Complex moduli of viscoelastic composites II: Fiber reinforced materials. International Journal of Solids and Structures. 1970b; 6: 797–807.
  • 4. Christensen RM. Viscoelastic properties of heterogeneous media. Journal of the Mechanics and Physics of Solids. 1969; 17: 23–41.
  • 5. Hashin Z. The elastic moduli of heterogeneous materials. Journal of Applied Mechanics. 1962; 29: 143–150.
  • 6. Brinson LC, Lin WS. Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites. Composite Structures. 1998; 41: 353–367.
  • 7. Haberman MR, Berthelot Y, Jarzynski J, Cherkaoui M. Micromechanical modeling of viscoelastic composites in the low frequency approximation. Journal of the Acoustical Society of America. 2002; 112(5): 1937–1943.
  • 8. Haberman MR, Berthelot Y, Cherkaoui M. Transmission loss of viscoelastic materials containing oriented ellipsoidal coated micro inclusions. Journal of the Acoustical Society of America. 2005; 118(5): 2984–2992.
  • 9. Haberman MR, Berthelot Y, Cherkaoui M. Micromechanical modeling of particulate composites for damping of acoustic waves. Journal of Engineering Materials and Technology. 2006; 128: 320–329.
  • 10. Cherkaoui M, Sabar H, Berveiller M. Micromechanical approach of the coated inclusion problem and applications to composite materials. Journal of Engineering Materials and Technology. 1994; 116: 274–278.
  • 11. Koutsawa Y, Cherkaoui M, Daya EM. Multi-coating inhomogeneities problem for effective viscoelastic properties of particulate composite materials. Publication in Journal of Engineering Materials and Technology. 2009; 131(2): 021012 (11 pages).
  • 12. Lipinski P, Barhdadi EH, Cherkaoui M. Micromechanical modeling of an arbitrary ellipsoidal multi-coated inclusion. Philosophical Magazine. 2006; 86(10): 1305–1326.
  • 13. Li R, Sun LZ. A micromechanics-based viscoelastic model for nanocomposites with imperfect interface. International Journal of Damage Mechanics. 2013; 22(7): 967–981.
  • 14. Jiang B, Batra RC. Effective electroelastic properties of a piezocomposite with viscoelastic and dielectric relaxing matrix. Journal of Intelligent Material Systems and Structures. 2001; 12(12): 847–866.
  • 15. Muliana A, Li KA. Time-dependent response of active composites with thermal, electrical, and mechanical coupling effect. International Journal of Engineering Science. 2010; 48(11): 1481–1497.
  • 16. Li JY, Dunn ML. Viscoelectroelastic behavior of heterogeneous piezoelectric solids. Journal of Applied Physics. 2001; 89: 2893–2903.
  • 17. Azrar L, Bakkali A, Aljinaidi AA. Frequency and time viscoelectroelastic effective properties modeling of heterogeneous and multi-coated piezoelectric composite materials. Composite Structures. 2014; 113: 281–297.
  • 18. Bakkali A, Azrar L, Aljinaidi AA. Viscomagnetoelectroelastic effective properties’ modeling for multi-phase and multi-coated magnetoelectroelastic composites. Journal of Intelligent Material Systems and Structures. 2016; 27(16): 2261–2286.
  • 19. Lahellec N, Suquet P. Effective behavior of linear viscoelastic composites: a time-integration approach. International Journal of Solids and Structures. 2007; 44(2): 507–529.
  • 20. Lahellec N, Suquet P. On the effective behavior of nonlinear inelastic composites: II: A second-order procedure. Journal of the Mechanics and Physics of Solids. 2007; 55(9): 1964–1992.
  • 21. Ricaud JM, Renaud M. Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours. International Journal of Solids and Structures. 2009; 46(7–8): 1599–1606.
  • 22. Masson R, Renald B, Olivier C. Incremental homogenization approach for ageing viscoelastic polycrystals. Comptes Rendus Mécanique. 2012; 340(4–5): 378–386.
  • 23. Berbenni S, Florence D, Hafid S. A new internal variables homogenization scheme for linear viscoelastic materials based on an exact Eshelby interaction law. Mechanics of Materials. 2015; 81: 110–124.
  • 24. Sanahuja J. Effective behaviour of ageing linear viscoelastic composites: Homogenization approach. International Journal of Solids and Structures. 2013; 50(19): 2846–2856.
  • 25. El Kouri M, Bakkali A, Azrar L. Mathematical modeling of the overall time-dependent behavior of non-ageing viscoelastic reinforced composites. Applied Mathematical Modelling. 2016; 40(7–8): 4302–4322.
  • 26. El Kouri M, Bakkali A, Azrar L. Straightforward mathematical modeling of the time-dependent behavior of non-ageing viscoelastic composites with multi-coated inclusions. Composite Structures. 2018; 200: 689–700.
  • 27. Bakkali A, El Kouri M. Micromechanical modeling for the prediction of time-dependent effective properties and macroscopic coupled field response of polymer reinforced piezoelectric composites. Applied Mathematical Modelling. 2023; 120: 79–97.
  • 28. Barthélémy JF, Giraud A, Lavergne F, Sanahuja J. The Eshelby inclusion problem in ageing linear viscoelasticity. International Journal of Solids and Structures. 2016; 97: 530–542.
  • 29. Chen Y, Xin L, Liu Y, Guo Z, Dong L, Zhong Z. A viscoelastic model for particle-reinforced composites in finite deformations. Applied Mathematical Modelling. 2019; 72: 499–512.
  • 30. Chen Y, Yang P, Zhou Y, Guo Z, Dong L, Busso EP. A micromechanics-based constitutive model for linear viscoelastic particle reinforced composites. Mechanics of Materials. 2020; 140: 103228.
  • 31. Chen Y, Zhao Z, Guo Z, Li Y. Micromechanical model of linear viscoelastic particle-reinforced composites with interphase. Applied Mathematical Modelling. 2021; 97: 308–321.
  • 32. Galadima YK, Oterkus S, Oterkus E, Amin I, El-Aassar AH, Shawky H. A nonlocal method to compute effective properties of viscoelastic composite materials based on peridynamic computational homogenization theory. Composite Structures. 2023; 319: 117147.
  • 33. Dinzart F. Viscoelastic behavior of composite materials with multi-coated ellipsoidal reinforcements and imperfect interfaces modeled by an equivalent inclusion. Mechanics of Time-Dependent Materials. 2023: 1–29.
  • 34. Molinari A. Averaging Models for Heterogeneous Viscoplastic and Elastic Viscoplastic Materials. Journal of Engineering Materials and Technology. 2002; 124(1): 62.
  • 35. Mercier S, Molinari A. Homogenization of elastic–viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes. International Journal of Plasticity. 2009; 25(6): 1024–1048.
  • 36. Kowalczyk-Gajewska K, Petryk H. Sequential linearization method for viscous/elastic heterogeneous materials. European Journal of Mechanics - A/Solids. 2011; 30(5): 650–664.
  • 37. Kim JY. Effective elastic constants of anisotropic multilayers. Mechanics Research Communications. 2001; 28(1): 97–101.
  • 38. Bouchikhi A, Bakkali A, Ouardouz M. Prediction of the macroscopic behavior of multi-layered elastic composites. MATEC Web of Conferences. 2002; 360: 00011.
  • 39. Kim BC, Baltazar A, Kim JY. Effective Properties of Multi-layered Multi-functional Composites. Advanced Composite Materials. 2009; 18(2): 153–166.
  • 40. Kim JY. Micromechanical analysis of effective properties of magneto-electro-thermo-elastic multilayer composites. International Journal of Engineering Science. 2011; 49(9): 1001–1018.
  • 41. Stupkiewicz S, Petryk H. Modelling of laminated microstructures in stress-induced martensitic transformations. Journal of the Mechanics and Physics of Solids. 2002; 50(11): 2303–2331.
  • 42. Berbenni S, Paliwal B, Cherkaoui M. A micromechanics-based model for shear-coupled grain boundary migration in bicrystals. International Journal of Plasticity. 2013; 44: 68–94.
  • 43. Tsekpuia E, Guery A, Gey N, Berbenni S. A microstructure-based three-scale homogenization model for predicting the elasto-viscoplastic behavior of duplex stainless steels. International Journal of Plasticity. 2023: 103575.
  • 44. Cruz-González OL, Rodríguez-Ramos R, Lebon F, Sabina FJ. Modeling of Imperfect Viscoelastic Interfaces in Composite Materials. Coatings. 2022; 12(5): 705.
  • 45. Talbot A. The accurate numerical inversion of Laplace transforms. Journal of the Institute of Mathematics and Its Applications. 1979; 23: 97–120.
  • 46. Hashin Z. The spherical inclusion with imperfect interface. Journal of Applied Mechanics. 1991a; 58(6): 444–449.
  • 47. Hashin Z. Thermoelastic properties of particulate composites with imperfect interface. Journal of the Mechanics and Physics of Solids. 1991b; 39: 745–762.
  • 48. Kuo HY, Wu TJ, Pan E. Multilayer multiferroic composites with imperfect interfaces. Smart Materials and Structures. 2018; 27(7): 075032.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a917bc2f-b7da-4d86-9d0b-264826687747
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.