PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Membrane filtration in swimming pools - case study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Filtracja membranowa w obiektach basenowych - studium przypadku
Języki publikacji
EN
Abstrakty
EN
Rational water and wastewater management in water-intensive public facilities is the basis for sustainable development in the 21st century. Considering that Poland is one of the countries with a high risk of water deficit, the use of membrane technologies for water recovery from washings in highly water-intensive swimming pool facilities is a complementary solution to two environmental engineering problems currently identified in Poland, the need for optimal water management and the reduction of operating costs of public facilities. Membrane filtration makes it possible to reduce water demand, reuse different water streams, and close water and wastewater management in one system. This paper presents the environmental and financial benefits of using the membrane ultrafiltration (UF) process to recover water from washings, using the example of one of Europe’s most modern aquaparks, “Suntago”. The analysis of water parameters before and after the UF membrane process was the main scope of this study. Separation of pollutants by membrane systems, in conjunction with a reduction in disinfection costs of reclaimed water, is an undeniable advantage of this technology. Selecting the appropriate water recovery system and controlling the parameters of the filtration process, filter bed washing, and membrane cleaning allow optimal operation of the system used, with the relatively highest operating profitability related to the need to replace the membranes in relation to the amount of recovered water.
PL
Racjonalna gospodarka wodno-ściekowa w wodochłonnych obiektach użyteczności publicznej jest podstawą zrównoważonego rozwoju w XXI wieku. Biorąc pod uwagę, że Polska należy do krajów o wysokim ryzyku deficytu wody, stosowanie membranowych technologii odzysku wody z popłuczyn w wysokowodochłonnych obiektach basenowych jest komplementarnym rozwiązaniem dwóch problemów inżynierii środowiska identyfikowanych obecnie w Polsce - potrzeby optymalnego gospodarowania wodą oraz obniżenia kosztów eksploatacji obiektów użyteczności publicznej. Filtracja membranowa pozwala na zmniejszenie zapotrzebowania na wodę, ponowne wykorzystanie różnych strumieni wody oraz zamknięcie gospodarki wodno-ściekowej w jednym systemie. W niniejszej pracy przedstawiono korzyści środowiskowe i finansowe, wynikające ze stosowania ultrafiltracji (UF) membranowej do odzysku wody z popłuczyn, na przykładzie jednego z najnowocześniejszych krytych aquaparków w Europie - „Suntago”. W celu oceny efektów UF analizie poddano parametry jakościowe wody przed i po procesie UF. Separacja zanieczyszczeń oraz redukcja kosztów dezynfekcji odzyskiwanej wody stanowią niezaprzeczalną zaletę analizowanej technologii. Dobór odpowiedniego systemu odzysku wody oraz kontrola parametrów procesu filtracji, płukania złóż filtracyjnych i czyszczenia membran pozwalają na optymalną pracę zastosowanego układu, przy stosunkowo najwyższej rentowności operacyjnej związanej z potrzebą wymiany membran w stosunku do ilości odzyskiwanej wody.
Czasopismo
Rocznik
Tom
Strony
36--41
Opis fizyczny
Bibliogr. 42 poz., fot., rys., tab.
Twórcy
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Inżynierii Wody i Ścieków, Gliwice
  • PPUH Transcom Sp. z o.o., Katowice
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Inżynierii Wody i Ścieków, Gliwice
  • Politechnika Śląska, Wydział Inżynierii Środowiska i Energetyki, Katedra Inżynierii Wody i Ścieków, Gliwice
  • PPUH Transcom Sp. z o.o., Katowice
Bibliografia
  • [1] X. Xing, Y. Cong, Y. Wang, and X. Wang, The Impact of COVID-19 and War in Ukraine on Energy Prices of Oil and Natural Gas, Sustainability. 15 (2023) 14208. doi: 10.3390/su151914208.
  • [2] M. Monge and A. Lazcano, Commodity Prices after COVID-19: Persistence and Time Trends, Risks. 10 (2022) 128. doi: 10.3390/risks10060128.
  • [3] Z. Z. Stanković et al., The Volatility Dynamics of Prices in the European Power Markets during the COVID-19 Pandemic Period, Sustainability. 16 (2024) 2426. doi: 10.3390/su16062426.
  • [4] J. A. Silva, Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review, Sustainability. 15 (2023) 10940. doi: 10.3390/su151410940.
  • [5] F. Piechurski, Analysis of water consumption in different types of indoor swimming pools, GAZ, WODA I TECHNIKA SANITARNA. 1 (2015) 4-9 (in Polish). doi: 10.15199/17.2015.9.1.
  • [6] T. B. Nitter, S. Carlucci, S. N. Olsen, and K. V. H. Svendsen, Energy use and perceived health in indoor swimming pool facilities, IOP Conf Ser Mater Sci Eng. 609 (2019) 042051. doi: 10.1088/1757-899X/609/4/042051.
  • [7] K. Ratajczak, E. Szczechowiak, and A. Pobudkowska, Energy-Saving Scenarios of an Existing Swimming Pool with the Use of Simple In Situ Measurement, Energies (Basel). 16 (2023) 5886. doi: 10.3390/en16165886.
  • [8] J. Wyczarska-Kokot, The problem of water renewal in swimming pool circuits. INSTAL 1(2024) 39-35. doi: 10.36119/15.2024.1.4.
  • [9] W. Poćwiardowski, The potential of swimming pool rinsing water for irrigation of green areas: a case study, Environmental Science and Pollution Research. 30 (2023) 57174-57177. doi: 10.1007/s11356-023-26126-x.
  • [10] A. Lempart-Rapacewicz, J. Zakharova, and E. Kudlek, Rainwater Quality Analysis for Its Potential Recovery: A Case Study on Its Usage for Swimming Pools in Poland, Sustainability. 15 (2023) 15037. doi: 10.3390/su152015037.
  • [11] J. Liebersbach, A. Żabnieńska-Góra, I. Polarczyk, and M. A. Sayegh, Feasibility of Grey Water Heat Recovery in Indoor Swimming Pools, Energies (Basel). 14 (2021) 4221. doi: 10.3390/en14144221.
  • [12] W. Poćwiardowski, The potential of swimming pool rinsing water for irrigation of green areas: a case study, Environmental Science and Pollution Research. 30 (2023) 57174-57177. doi: 10.1007/s11356-023-26126-x.
  • [13] S. Alzahrani and A. W. Mohammad, Challenges and trends in membrane technology implementation for produced water treatment: A review, Journal of Water Process Engineering. 4 (2014) 107-133. doi: 10.1016/j.jwpe.2014.09.007.
  • [14] F. G. Reissmann and W. Uhl, Ultrafiltration for the reuse of spent filter backwash water from drinking water treatment, Desalination. 198 (2006) 225-235. doi: 10.1016/j.desal.2006.03.517.
  • [15] N. L. Le and S. P. Nunes, Materials and membrane technologies for water and energy sustainability, Sustainable Materials and Technologies. 7 (2016) 1-28. doi: 10.1016/j.susmat.2016.02.001.
  • [16] J. Drewnowski, J. Marjanowski, M. Sadaj, B. Szeląg, J. Szulżyk-Cieplak, and G. Łagód, Strategy towards the use of ultrafiltration and reverse osmosis for industrial water recovery and reuse as part of the Green Deal Implementation, Desalination Water Treat. 305 (2023) 227-235. doi: 10.5004/dwt.2023.29837.
  • [17] A. Lempart, E. Kudlek, and M. Dudziak, Nano-filtration treatment of swimming pool water in the aspect of the phenolic micropollutants elimination, Desalination Water Treat. 128 (2018). doi: 10.5004/dwt.2018.22876.
  • [18] E. Barbot and P. Moulin, Swimming pool water treatment by ultrafiltration-adsorption process, J Memb Sci. 314 (2008) 50-57. doi: 10.1016/j.memsci.2008.01.033.
  • [19] A. Lempart, E. Kudlek, and M. Dudziak, Concentration levels of selected pharmaceuticals in swimming pool water, Desalination Water Treat. 117 (2018). doi: 10.5004/dwt.2018.22552.
  • [20] E. Kudlek, A. Lempart-Rapacewicz, and M. Dudziak, Identification of Potential Harmful Transformation Products of Selected Micropollutants in Outdoor and Indoor Swimming Pool Water, Int J Environ Res Public Health. 19 (2022). doi: 10.3390/ijerph19095660.
  • [21] L. M. Suppes, C.-H. Huang, W.-N. Lee, and K. J. Brockman, Sources of pharmaceuticals and personal care products in swimming pools, J Water Health. 15 (2017) 829-833. doi: 10.2166/wh.2017.004.
  • [22] X. Zhou, F. Peng, Z. Luo, Y. Li, H. Li, and Z. Yang, Assessment of water contamination and health risk of endocrine disrupting chemicals in out-door and indoor swimming pools, Science of The Total Environment. 704 (2020) 135277. doi: 10.1016/j.scitotenv.2019.135277.
  • [23] Y. Li, L. Chen, H. Li, F. Peng, X. Zhou, and Z. Yang, Occurrence, distribution, and health risk assessment of 20 personal care products in indoor and outdoor swimming pools, Chemosphere. 254 (2020) 126872, doi: 10.1016/j.chemosphere.2020.126872.
  • [24] F. Peng, Y. Lu, X. Dong, Y. Wang, H. Li, and Z. Yang, Advances and research needs for disinfection byproducts control strategies in swimming pools, J Hazard Mater. 454 (2023) 131533, doi: 10.1016/j.jhazmat.2023.131533.
  • [25] J. Wang, M. Zhang, S. Hu, Q. Xian, H. Chen, and T. Gong, Occurrence and Cytotoxicity of Aliphatic and Aromatic Halogenated Disinfection Byproducts in Indoor Swimming Pool Water and Their Incoming Tap Water, Environ Sci Technol. 56 (2022) 17763-17775, doi: 10.1021/acs.est.2c07175.
  • [26] E. Ahmadpour et al., Full-scale multisampling and empirical modeling of DBPs in water and air of indoor pools, Environ Monit Assess. 195 (2023) 1128, doi: 10.1007/s10661-023-11619-6.
  • [27] V. R. Spica, Public Health Issues of Recreational Waters: Perspectives for Innovation and Advanced Management, Water (Basel). 13 (2021) 2183, doi: 10.3390/w13162183.
  • [28] Z. Yigit Avdan, S. Goncu, and E. T. Mızık, Evaluation of Trihalomethane Formation Risk Analysis in Swimming Pools in Eskisehir, Turkey, Environ Forensics. 24 (2023) 205-217, doi: 10.1080/15275922.2022.2047829.
  • [29] Decree of the Health Minister on the requirements for water in swimming pools, Journal of Laws 2022, item 1230 (in Polish).
  • [30] DIN 19643:2023 ufbereitung von Schwimm Und Badebeckenwasser, Beuth-Verlag. Germany (2023).
  • [31] DIN 19605:1995 DE Festbettfilter Zur Wasseraufbereitung - Aufbau Und Bestandteile. Germany (1995).
  • [32] Directive (eu) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption.
  • [33] E. Fernandes and R. Cunha Marques, Review of Water Reuse from a Circular Economy Perspective, Water (Basel). 15 (2023) 848, doi: 10.3390/w15050848.
  • [34] M. Maglionico and I. Stojkov, Water consumption in a public swimming pool, Water Supply. 15 (2015) 1304-1311, doi: 10.2166/ws.2015.095.
  • [35] B. J. Cardoso, A. R. Gaspar, J. C. Góis, and E. Rodrigues, Energy and water consumption characterization of portuguese indoor swimming pools, in Proceedings of the CYTEF 2018 VII Congreso Ibérico, Ciencias Y Técnicas del Frío, Valencia, Spain (2018).
  • [36] I. S. Marinopoulos and K. L. Katsifarakis, Optimization of Energy and Water Management of Swimming Pools. A Case Study in Thessaloniki, Greece, Procedia Environ Sci, 38 (2017) 773-780, doi: 10.1016/j.proenv.2017.03.161.
  • [37] H. Schönberger, J. Galvez Martos, and D. Styles, Best environmental management practice in the tourism sector - Learning from frontrunners, Institute for Prospective Technological Studies. (2013).
  • [38] J. Wyczarska-Kokot and A. Lempart, The Influence of the Filtration Bed type in the Pool Water Treatment System on Washings Quality, Ecological Chemistry and Engineering S. 26 (2019), doi: 10.1515/eces-2019-0039.
  • [39] F. Silva, A. M. Antão-Geraldes, C. Zavattieri, M. J. Afonso, F. Freire, and A. Albuquerque, Improving Water Efficiency in a Municipal Indoor Swimming-Pool Complex: A Case Study, Applied Sciences. 11 (2021) 10530, doi: 10.3390/app112210530.
  • [40] W. Studziński, W. Poćwiardowski, and W. Osińska, Application of the Swimming Pool Backwash Water Recovery System with the Use of Filter Tubes, Molecules. 26 (2021) 6620, doi: 10.3390/molecules26216620.
  • [41] F. G. Reißmann, E. Schulze, and V. Albrecht, Application of a combined UF/RO system for the reuse of filter backwash water from treated swimming pool water, Desalination. 178 (2005) 41-49, doi: 10.1016/j.desal.2004.11.027.
  • [42] H. L. Tang and Y. F. Xie, Biologically active carbon filtration for haloacetic acid removal from swimming pool water, Science of The Total Environment. 541 (2016) 58-64, doi: 10.1016/j.scitotenv.2015.09.059.
Uwagi
1. This work was supported by the Polish Ministry of Science and Higher Education as part of the “Implementation Doctorate 2023” program, No. DWD/7/0330/2023. The authors are very grateful to the authorities of Global Parks Poland Sp. z o.o., who made it possible to carry out this research. The authors are also very grateful for support and help, without which the publication of this article would not have been possible.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a913c7c3-0b40-4278-800a-784c91743950
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.