Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Development of synthetic bone graft via bone tissue engineering involves seeding of patient’s stem cells onto a porous scaffold in presence of growth factors. Porosity, strength and dimensional accuracy of the porous scaffold play a vital role in this process. This work aims at ascertaining influence of build orientation on porosity, mechanical strength and dimensional accuracy of the selectively laser sintered polyamide porous scaffolds. Initially, CAD models of test specimens with pre-designed porosity were created in Solidworks® software. All the specimens were fabricated on EOSINT P395, a selective laser sintering machine, along various primary (Flat, Edge, Upright and Flat_diag) and secondary (0◦, 30◦, 45◦, 60◦ and 90◦) orientations. Results show that measured porosity of most of the specimens was (range: 42.89–35.26%) less than the designed porosity (41.71%). Maximum average tensile strength (16.84 MPa) was recorded for specimens printed along Flat_0◦ orientation. Specimens printed along Upright_90◦ orientation showed highest average compressive strength (8.26 MPa). Specimens printed along Flat orientation showed relatively better average impact strength. Best dimensional accuracy was obtained for specimens printed along Flat orientation.
Wydawca
Czasopismo
Rocznik
Tom
Strony
227--249
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Guna, MP, India
autor
- Department of Mechanical Engineering, Jaypee University of Engineering and Technology, Guna, MP, India
Bibliografia
- [1] A. Kołakowska, A. Gadomska-Gajadhur, and P. Ruśkowski. Biomimetic scaffolds based on chitosan in bone regeneration. A review. Chemical and Process Engineering, 43(3):305–330, 2022. doi: 10.24425/cpe.2022.142277.
- [2] V. Chadayammuri, M. Hake, and C. Mauffrey. Innovative strategies for the management of long bone infection: a review of the Masquelet technique. Patient Safety in Surgery, 9:32, 2015. doi: 10.1186/s13037-015-0079-0.
- [3] J. Hu, J.H. Wang, R. Wang, X.B. Yu, Y. Liu and, D.A. Baur. Analysis of biomechanical behavior of 3D printed mandibular graft with porous scaffold structure designed by topological optimization. 3D Printing in Medicine, 5:5, 2019. doi: 10.1186/s41205-019-0042-2.
- [4] K.K. Sahu and Y.K. Modi. Investigation on dimensional accuracy, compressive strength and measured porosity of additively manufactured calcium sulphate porous bone scaffolds. Materials Technology, 36(8):492–503, 2021. doi: 10.1080/10667857.2020.1774728.
- [5] Y.K. Modi and K.K. Sahu. Process parameter optimization for porosity and compressivestrength of calcium sulfate based 3D printed porous bone scaffolds. Rapid Prototyping Journal, 27(2):245–255, 2021. doi: 10.1108/RPJ-04-2020-0083.
- [6] H. Qu, H. Fu, Z. Han, and Y. Sun. Biomaterials for bone tissue engineering scaffolds: a review. RSC Advances, 9(45):26252–26262, 2019. doi: 10.1039/C9RA05214C.
- [7] C. Garot, G. Bettega, and C. Picart. Additive manufacturing of material scaffolds for bone regeneration: toward application in the clinics. Advanced Functional Materials, 31(5):2006967, 2021. doi: 10.1002/adfm.202006967.
- [8] B. Ostrowska, J. Jaroszewicz, E. Zaczyńska, W. Tomaszewski, W. Swieszkowski, and K.J. Kurzydłowski. Evaluation of 3D hybrid microfiber/nanofiber scaffolds for bone tissue engineering. Bulletin of the Polish Academy of Sciences. Technical Sciences, 62(3):551–556, 2014. doi: 10.2478/bpasts-2014-0059.
- [9] S. Bose, S. Vahabzadeh, and A. Bandyopadhyay. Bone tissue engineering using 3D printing. Materials Today, 16(12):496–504, 2013. doi: 10.1016/j.mattod.2013.11.017.
- [10] A. Eltom, G. Zhong, and A. Muhammad. Scaffold techniques and designs in tissue engineering functions and purposes: A review. Advances in Materials Science and Engineering, 2019:3429527, 2019. doi: 10.1155/2019/3429527.
- [11] A. El Magri, S. Vaudreuil, K. El Mabrouk, and M. Ebn Touhami. Printing temperature efects on the structural and mechanical performances of 3D printed Poly-(phenylene sulfide) material. IOP Conference Series: Materials Science and Engineering, 783:012001, 2020. doi: 10.1088/1757-899X/783/1/012001.
- [12] A. Dąbrowska-Tkaczyk, A. Floriańczyk, R. Grygoruk, K. Skalski, and P. Borkowski. Virtual and material models of human thoracic-lumbar spine with compressive fracture based on patients’ CT data and the rapid prototyping technique. Archive of Mechanical Engineering, 58(4):425–440, 2011. doi: 10.2478/v10180-011-0026-2.
- [13] K. Szlązak, J. Jaroszewicz, B. Ostrowska,T. Jaroszewicz, M. Nabiałek, M. Szota, and, W. Swieszkowski. Characterization of three-dimensional printed composite scaffolds prepared with different fabrication methods. Archives of Metallurgy and Materials, 61(2):645–650, 2016. doi: 10.1515/amm-2016-0110.
- [14] H.N. Singh, S. Agrawal, and Y.K. Modi. Additively manufactured patient specific implants: A review. Archive of Mechanical Engineering, 71(1):109–138. doi: 10.24425/ame.2024.149635.
- [15] S. Zhang, S. Vijayavenkataraman, W. F. Lu, and J.Y. Fuh. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds with a potential in 3D printing fabrication. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 107(5):1329–1351, 2019. doi: 10.1002/jbm.b.34226.
- [16] C. Wang, W. Huang, Y. Zhou, L. He, Z. He, Z. Chen, X. He, S. Tian, J. Liao, B. Lu, and Y. Wei. 3D printing of bone tissue engineering scaffolds. Bioactive Materials, 5(1):82–91, 2020. doi: 10.1016/j.bioactmat.2020.01.004.
- [17] P. Wang, Y. Sun, X. Shi, H. Shen, H. Ning, and H. Liu. 3D printing of tissue engineering scaffolds: a focus on vascular regeneration. Bio-Design and Manufacturing, 4(2):344–378, 2021. doi: 10.1007/s42242-020-00109-0.
- [18] N. Przyszlak, A. Dulska, T. Wróbel, and J. Szajnar. Grey cast iron locally reinforced us- ing 3D printing scaffold insert. Archives of Foundry Engineering, 18(1):99–102, 2018. doi: 10.24425/118819.
- [19] T. Kumaresan, R. Gandhinathan, M. Ramu, M. Ananthasubramanian, and K.B. Pradheepa. Design, analysis and fabrication of polyamide/hydroxyapatite porous structured scaffold using selective laser sintering method for bio-medical applications. Journal of Mechanical Science and Technology, 30:5305–5312, 2016. doi: 10.1007/s12206-016-1049-x.
- [20] T. Alamro, M. Yunus, R. Alfattani, and I.A. Alnaser. Effect of part build orientations and sliding wear factors on tribological characteristics of FDM processed parts. Archive of Mechanical Engineering, 68(3):321–336, 2021. doi: 10.24425/ame.2021.138395.
- [21] A. Korycki, C. Garnier, V. Nassiet, C.T. Sultan, and F. Chabert. Optimization of mechani- cal properties and manufacturing time through experimental and statistical analysis of pro- cess parameters in selective laser sintering. Advances in Materials Science and Engineering, 2022:2526281, 2022. doi: 10.1155/2022/2526281.
- [22] G. Ziółkowski, E. Grochowska, D. Kęszycki, P. Gruber, V. Hoppe, P. Szymczyk-Ziółkowska, and T. Kurzynowski. Investigation of porosity behavior in SLSPolyamide-12 samples using X-ray computed tomography. Materials Science-Poland, 39(3):436–445, 2021. doi: 10.2478/msp- 2021-0035.
- [23] T. Kozior, M.M. Hanon, P. Zmarzły, D. Gogolewski, M. Rudnik, and W. Szot. Evaluation of the influence of technological parameters of selected 3D printing technologies on tribological properties. 3D Printing and Additive Manufacturing, 2023. doi: 10.1089/3dp.2023.0080.
- [24] M.K. Razaviye, R.A. Tafti, and M. Khajehmohammadi. An investigation on mechanical properties of PA12 parts produced by a SLS 3D printer: an experimental approach. CIRP Journal of Manufacturing Science and Technology, 38:760–768, 2022. doi: 10.1016/j.cirpj.2022.06.016.
- [25] P.K. Jain, P.M. Pandey, and P.V. Rao. Experimental investigations for improving part strength in selective laser sintering. Virtual and Physical Prototyping, 3(3):177-188, 2008 .doi: 10.1080/17452750802065893.
- [26] A. Pilipović, B. Valentan, and M. Šercer. Influence of SLS processing parameters according to the new mathematical model on flexural properties. Rapid Prototyping Journal, 22(2):258–268, 2016. doi: 10.1108/RPJ-08-2014-0092.
- [27] J.P. Singh, P.M. Pandey, and A.K. Verma. Fabrication of three-dimensional open porous regular structure of PA-2200 for enhanced strength of scaffold using selective laser sintering. Rapid Prototyping Journal, 22(4):752–765, 2016. doi: 10.1108/RPJ-11-2014-0148.
- [28] A.A. Mousa. Experimental investigations of curling phenomenon in selective laser sintering process. Rapid Prototyping Journal, 22(2):405–415, 2016. doi: 10.1108/RPJ-12-2013-0132.
- [29] R.D. Goodridge, C.J. Tuck, and R.J.M. Hague. Laser sintering of polyamides and other poly- mers. Progress in Materials Science, 57(2):229–267, 2012. doi: 10.1016/j.pmatsci.2011.04.001.
- [30] M. Yuan and D. Bourell. Orientation effects for laser sintered polyamide optically translucent parts. Rapid Prototyping Journal, 22(1):97-103, 2016. doi: 10.1108/RPJ-01-2014-0007.
- [31] G.A. Adam and D. Zimmer. On design for additive manufacturing: evaluating geometrical limitations. Rapid Prototyping Journal, 21(6):662–670, 2015. doi: 10.1108/RPJ-06-2013-0060.
- [32] G Berti, L D’angelo, A Gatto, and L. Iuliano. Mechanical characterisation of PA-AL2O3 composites obtained by selective laser sintering. Rapid Prototyping Journal, 16(2):124–129, 2010. doi: 10.1108/13552541011025843.
- [33] D.I. Stoia, E. Linul, and L. Marsavina. Influence of manufacturing parameters on mechanical properties of porous materials by selective laser sintering. Materials, 12(6):871, 2019. doi: 10.3390/ma12060871.
- [34] L. Feng, Y. Wang, and Q. Wei. PA12 powder recycled from SLS for FDM. Polymers, 11(4):727, 2019. doi: 10.3390/polym11040727.
- [35] L. Zárybnická, J. Petrů, P. Krpec, and M. Pagáč. Effect of additives and print orientation on the properties of laser sintering-printed Polyamide 12 components. Polymers, 14(6):1172, 2022. doi: 10.3390/polym14061172.
- [36] A. El Magri, S.E. Bencaid, H.R. Vanaei, and S. Vaudreuil. Effects of laser power and hatch orientation on final properties of PA12 parts produced by selective laser sintering. Polymers, 14(17):3674, 2022. doi: 10.3390/polym14173674.
- [37] Product information PA2200, https://www.eos.info/en/3d-printing-materials/plastic/polyamidepa-12-alumide. accessed on 26/09/2023.
- [38] Y. Zhang, N. Sun, M. Zhu, Q. Qiu, P. Zhao, C. Zheng, Q. Bai, Q. Zeng, and T. Lu. The contribution of pore size and porosity of 3D printed porous titanium scaffolds to osteogenesis. Biomaterials Advances, 133:112651, 2022. doi: 10.1016/j.msec.2022.112651.
- [39] M. Schmid, A. Amado, and K. Wegener. Materials perspective of polymers for additive man- ufacturing with selective laser sintering. Journal of Materials Research, 29(17):1824–1832, 2014. doi: 10.1557/jmr.2014.138.
- [40] A. Hills, K. Gowans, A. Di Biase, J. McKenzie, and N.Goodger. Accuracy of orthognathic surgery – a retrospective service evaluation. International Journal of Oral and Maxillofacial Surgery, 46:158, 2017. doi: 10.1016/j.ijom.2017.02.545.
- [41] M. Mandolini, M. Caragiuli, A. Brunzini, A. Mazzoli, and M. Pagnoni. A procedure for designing custom-made implants for forehead augmentation in people suffering from Apert syndrome. Journal of Medical Systems, 44:146, 2020. doi: 10.1007/s10916-020-01611-9 Influence of build orientation on porosity, strength and dimensional accuracy of laser.
- [42] F. Calignano, F. Giuffrida, and M. Galati. Effect of the build orientation on the mechanical performance of polymeric parts produced by multi jet fusion and selective laser sintering. Journal of Manufacturing Processes, 65:271–282, 2021. doi: 10.1016/j.jmapro.2021.03.018.
- [43] D.I. Stoia, S.V. Galatanu, and L. Marsavina. Impact properties of laser sintered polyamide, according to building orientation. Journal of Mechanical Science and Technology, 37(3):1119–1123, 2023. doi: 10.1007/s12206-022-2108-0.
- [44] M. Tomanik, M. Żmudzińska, and M. Wojtków. Mechanical and structural evaluation of the PA12 desktop selective laser sintering printed parts regarding printing strategy. 3D Printingand Additive Manufacturing, 8(4):271–279, 2021. doi: 10.1089/3dp.2020.0111.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9117691-4311-4f7a-a4df-0d7b77452edc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.