Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Positronium Imaging requires two classes of events: double-coincidences originated from pair of back-to-back annihilation photons and triple-coinciden cescomprised with two annihilation photons and one additional prompt photon.The standard reconstruction of the emission position along the line-of-response of a triple-coincidence event is the same as in the case of double-coincidence event; an information introduced by the high-energetic prompt photon is ignored. In this study, we propose to extend the reconstruction of the position of the triple-coincidence event by taking into account the time and position of the prompt photon. We incorporate knowledge about the positronium life time distribution and discuss the limitations of the method based on the simulation data. We highlight that the uncertainty of the estimate provided by prompt photon alone is much higher than the standard deviation estimated based on two annihilation photons. We finally demonstrate the extent of resolution improvement that can be obtained when estimated using three photons.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
127--145
Opis fizyczny
Bibliogr. 29 poz., rys., wykr.
Twórcy
autor
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Swierk, Poland
autor
- High Energy Physics Division, National Centre for Nuclear Research, 05-400 Otwock-Swierk, Poland
autor
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Swierk, Poland
Bibliografia
- [1] Bass S., Mariazzi S., Moskal P., E. S.: Colloquium: Positronium physics and biomedical applications, Rev Mod Phys, vol. 95, 021002, 2023. doi: 10.1103/RevModPhys.95.021002.
- [2] Cassidy D.: Experimental progress in positronium laser physics, European Physical Journal D, vol. 72, 53, 2018. doi: 10.1140/epjd/e2018-80721-y.
- [3] Cates J., Levin C.: Evaluation of a clinical TOF-PET detector design that achieves less than 100 ps coincidence time resolution, Physics in Medicine and Biology, vol. 63, 115011, 2018. doi: 10.1088/1361-6560/aac504.
- [4] Conti M., Bendriem B.: The new opportunities for high time resolution clinicalTOF PET, Clin Trans Imag, vol. 7, pp. 139–147, 2019. doi: 10.1007/s40336-019-00316-5.
- [5] Giovagnoli D., Bousse A., Beaupere N., Canot C., Cussonneau J., Diglio S., Carreres A., et al.: A Pseudo-TOF Image Reconstruction Approach for Three-Gamma Small Animal Imaging, IEEE Transactions on Radiation and Plasma Medical Sciences, vol. 5, pp. 826–834, 2020. doi: 10.1109/TRPMS.2020.3046409.
- [6] Harpen M.: Positronium: Review of symmetry, conserved quantities and decay for the radiological physicist, Medical Physics, vol. 31, pp. 57–61, 2003.doi: 10.1118/1.1630494.
- [7] Huang B., Li T., Arino-Estrada G., Dulski K., Shopa R., Moskal P., Stepien E., et al.: Split: Statistical positronium lifetime image reconstruction via time-thresholding, IEEE Transactions on Medical Imaging, vol. 43, 2148, 2024. doi: 10.1109/TMI.2024.3357659.
- [8] Jacobs O.: Introduction to Control Theory, Oxford University Press, 1993.
- [9] Jasinska B., Moskal P.: A New PET Diagnostic Indicator Based on the Ratio of 3 gamma to 2 gamma Positron Annihilation, Acta Physica Polonica B, vol. 48,1577, 2017. doi: 10.5506/APhysPolB.48.1577.
- [10] Jasinska B., Zgardzinska B., Cholubek G., Gorgol M., Wiktor K., Wysoglad K., Bialas P., et al.: Human Tissues Investigation Using PALS Technique, Acta Physica Polonica B, vol. 48, 1737, 2017. doi: 10.5506/APhysPolB.
- [11] Jasinska B., Zgardzinska B., Cholubek G., Pietrow M., Gorgol M., Wiktor K.,Wysoglad K., et al.: Human Tissue Investigations Using PALS Technique - Free Radicals Influence, Acta Physica Polonica A, vol. 132, 1556, 2017. doi: 10.12693/APhysPolA.132.1556.
- [12] Jegal J., Jeong D., Seo E., Park H., Kim H.: Convolutional neural network-based reconstruction for positronium annihilation localization, Scientific Reports, vol. 12, 8531, 2022. doi: 10.1038/s41598-022-11972-5.
- [13] Kalman R.: A New Approach to Linear Filtering and Prediction Problems, Transaction of the ASME - Journal of Basic Engineering, pp. 35–45, 1960.
- [14] Karp J., Surti S., Daube-Witherspoon M., Muehllehner G.: Benefit of Time-of-Flight in PET: Experimental and Clinical Results, Journal of Nuclear Medicine, vol. 49, pp. 462–470, 2008. doi: 10.2967/jnumed.107.044834.
- [15] Moskal P., Baran J., Bass S., Choinski J., Chug N., Curceanu C., Czerwinski E., et al.: Positronium image of the human brain in vivo, Science Advances, vol. 10,2024. doi: 10.1126/sciadv.adp2840.
- [16] Moskal P., Dulski K., Chug N., Curceanu C., Czerwinski E., Dadgar M., Gajewski J., et al.: Positronium imaging with the novel multiphoton PET scanner, Science Advances, vol. 7, 4394, 2021. doi: 10.1126/sciadv.abh4394.
- [17] Qi J., Huang B.: Positronium lifetime image reconstruction for TOF PET, IEEE Transactions on Medical Imaging, vol. 41, 2848, 2022. doi: 10.1109/TMI.2022.3174561.
- [18] Schaart D., Seifert S., Vinke R., van Dam H., Dendooven P., Lohner H., Beek-man F.: LaBr3: Ce and SiPMs for time-of-flight PET: achieving 100 ps coincidence resolving time, Physics in Medicine and Biology, vol. 55, pp. N179–89, 2010. doi: 10.1088/0031-9155/55/7/N02.
- [19] Shibuya K., Saito H., Nishikido F., Takahashi M., Yamaya T.: Oxygen sensingability of positronium atom for tumor hypoxia imaging, Communications Physics,vol. 3, 173, 2020. doi: 10.1038/s42005-020-00440-z.
- [20] Shibuya K., Saito H., Tashima H., Yamaya T.: Using inverse Laplace transformin positronium lifetime imaging, Physics in Medicine and Biology, vol. 67, 025009, 2022. doi: 10.1088/1361-6560/ac499b.
- [21] Shopa R., Dulski K.: Multi-photon time-of-flight MLEM application for the positronium imaging in J-PET, Bio-Algorithms and Med-Systems, vol. 18, 135,2022. doi: 10.2478/bioal-2022-0082.
- [22] Shopa R., Dulski K.: Positronium imaging in J-PET with an iterative activity reconstruction and a multi-stage fitting algorithm, Bio-Algorithms and Med-Systems, vol. 19, 2023. doi: 10.5604/01.3001.0054.1826.
- [23] Słomka P., Pan T., Germano G.: Recent advances and future progress in PET instrumentation, Semin Nucl Med, vol. 46, pp. 5–19, 2016. doi: 10.1053/j.semnuclmed.2015.09.006.
- [24] van Sluis J., de Jong J., Schaar J., Noordzij W., van Snick P., Dierckx R., Borra R., et al.: Performance Characteristics of the Digital Biograph Vision PET/CT System, Journal of Nuclear Medicine, vol. 60, pp. 1031–1036, 2019.doi: 10.2967/jnumed.118.215418.
- [25] Sorenson H.: Least-Squares estimation: from Gauss to Kalman, IEEE Spectrum, vol. 7, pp. 63–68, 1970.
- [26] Steinberger W., Mercolli L., Breuer J., Sari H., Parzych S., Niedzwiecki S., Lapkiewicz G., et al.: Positronium life time validation measurements using along-axial field-of-view positron emission tomography scanner, EJNMMI Physics, vol. 11, 76, 2024. doi: 10.1186/s40658-024-00678-4.
- [27] Takyu S., Nishikido F., Tashima H., Akamatsu G., Matsumoto K., Takahashi M., Yamaya T.: Positronium lifetime measurement using a clinical PET system for tumor hypoxia identification, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1065, 169514, 2024. doi: 10.1016/j.nima.2024.169514.
- [28] Tao S.: Positronium Annihilation in Molecular Substances, J Chem Phys, vol. 56, pp. 5499–5510, 1972. doi: 10.1063/1.1677067.
- [29] Zgardzinska B., Cholubek G., Jarosz B., Wysoglad K., Gorgol M., Gozdziuk M.,Cholubek M., et al.: Studies on healthy and neoplastic tissues using positron annihilation life time spectroscopy and focused histopathological imaging, Scientific Reports, vol. 10, 11890, 2020. doi: 10.1038/s41598-020-68727-3.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a90ce2ad-e768-4122-a02c-b1a2a46106d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.