Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the managed forest of temperate Europe, black cherry (Prunus serotina) is one of the most important invader species. Among the ecological traits enabling its expansion in forest stands, the role of chemical compounds released naturally by this plant into the environment still remains unclear. The aim of this study was to determine the influence of black cherry leaf litter on the germination and growth of Scots pine (Pinus sylvestris) seedlings. Laboratory bioassays with extracts from newly fallen and decomposed leaves showed a phytotoxic effect on root elongation and a slightly weaker negative effect on stem growth of pine shoots. The inhibitory effect increased with the gradient of leaf extract concentration. Furthermore, a significant negative correlation was observed between condensed tannin content in decomposed leaf litter of the black cherry and the pine root growth. The results are discussed in the context of black cherry litter properties which could interfere with natural regeneration of pine forests.
Czasopismo
Rocznik
Tom
Strony
137--147
Opis fizyczny
Bibliogr. 66 poz., tab., wykr.
Twórcy
autor
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
autor
- Department of Botany and Plant Ecology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
Bibliografia
- 1. Baldwin I. T., Halitschke R., Paschold A., von Dahl C. C., Preston C. A. 2006 – Volatile signaling in plant-plant interactions: “talking trees” in the genomics era – Science, 311: 812-815.
- 2. Ballhorn D. J. 2011 – Constraints of simultaneous resistance to a fungal pathogen and an insect herbivore in lima bean (Phaseolus lunatus L.) – J. Chem. Ecol. 37: 141-144.
- 3. Ballhorn D. J., Pietrowski A., Lieberei R. 2010 – Direct trade-off between cyanogenesis and resistance to a fungal pathogen in lima bean (Phaseolus lunatus L.) – J. Ecol. 98: 226-236.
- 4. Ballhorn D. J., Kautz S., Jensen M., Schmitt I., Heil M., Hegeman A. D. 2011 – Genetic and environmental interactions determine plant defenses against herbivores – J. Ecol. 99: 313-326.
- 5. Bijak S., Czajkowski M., Ludwisiak Ł. 2014 – Occurrence of black cherry (Prunus serotina Ehrh.) in the State Forests in Poland – Forest Research Papers, 75: 359-365.
- 6. Bonanomi G., Sicurezza M. G., Caporaso S., Esposito A., Mazzoleni S. 2006 – Phytotoxicity dynamics of decaying plant materials – New Phytol. 169: 571-578.
- 7. Bostan C., Horablaga A., Căluşeru A. L., Rujan C., Cojocariu A., Coman M., Ghica A. 2012 – The influence of the allelopathic interactions between plants – Research Journal of Agricultural Science, 44: 11-17.
- 8. Broadhurst R. B., Jones W. T. 1978 – Analysis of condensed tannins using acidified vanillin – J. Sci. Food Agr. 29: 788-794.
- 9. Brown P. D., Morra M. J., Mc Caffrey J. P., Auld D. L., Williams L. 1991 – Allelochemicals produced during glucosinolate degradation in soil – J. Chem. Ecol. 17: 2021-2034.
- 10. Callaway R. M. 2002 – The detection of neighbors by plants – Trends Ecol. Evol. 17: 104-105.
- 11. Chabrerie O., Loinard J., Perrin S., Saguez R., Decocq G. 2010 – Impact of Prunus serotina invasion on understory functional diversity in a European temperate forest –Biol. Invasions, 12: 1891-1907.
- 12. Csiszár Á., Korda M., Schmidt D., Šporčić D. et al. 2013 – Allelopathic potential of some invasive plant species occurring in Hungary – Allelopathy J. 31: 309-18.
- 13. Closset-Kopp D., Chabrerie O., Valentin B., Delachapelle H., Decocq G. 2007 – When Oskar meets Alice: does a lack of trade-off in r/k strategies make Prunus serotina a successful invader of European forest? – Forest Ecol. Manag. 247: 120-130.
- 14. Dakshini K. M. M, Foy C. L., Inderjit. 1999 – Allelopathy: one component in a multifaceted approch to ecology (In: Principles and Practices in Plant Ecology, Eds: Inderjit, K. M. M Dakshini, C. L Foy) – CRC Press, Boca Raton, pp. 2-14.
- 15. Drogoszewski B., Barzdajn W. 1984 – [Effect of aqueous extracts from Prunus serotina (Ehrh.) tissues on seed germination of Pinus sylvestris L.] – Pr. Kom. Nauk Roln. Leśn. 58: 33-38 (in Polish, English summary).
- 16. Duke S. O. 2010 – Allelopathy: Current status of research and future of the discipline: A Commentary – Allelopathy J. 25: 17-30.
- 17. Einhelling F. A. 1995 – Mechanism of action of allelochemicals in allelopathy (In: Allelopathy Organisms Processes and Applications, Eds. K. M. M. Inderjit, F. A. Dakshini) – American Chemical Society, Washington, pp. 96-116.
- 18. EI-Khatib A., Hegazy A., Galal H. 2004 – Does allelopathy have a role in the ecology of Chenopodium murale? – Ann. Bot. Fenn. 41: 37-45.
- 19. Facelli J. M., Pickett S. T. A. 1991 – Plant litter: its dynamics and its role in plant community structure – Bot. Rev. 57: 1-32.
- 20. Garnett E., Jonsson L. M., Dighton J., Murnen K. 2004 – Control of pitch pine seed germination and initial growth exerted by leaf litters and polyphenolic compounds – Biol. Fert. Soils 40: 421-426.
- 21. Gleadow R. M., Møller B. L. 2014 – Cyanogenic glycosides: synthesis, physiology and phenotypic plasticity – Annu. Rev. Plant. Biol. 65: 155-185.
- 22. Gniazdowska A., Bogatek R. 2005 – Allelopathic interactions between plants. Multi site action of allelochemicals – Acta Physiol. Plant, 27: 395-407.
- 23. Halarewicz A., Gabryś B. 2012 – Did the evolutionary transition of aphids from angiosperm to non-spermatophyte vascular plants have any effect on probing behaviour? – B. Insectol. 65: 77-80.
- 24. Halarewicz A., Pląskowska E., Sokół-Łętowska A., Kucharska A. 2013 – The effect of Monilinia seaveri (Rehm) Honey infection on the condensed tannins content in the leaves of Prunus serotina Ehrh – Acta Sci. Pol-Hortoru, 12: 95-106.
- 25. Halarewicz A., Pruchniewicz D. 2015 – Vegetation and environmental changes in a [Scots pine forest invaded by Prunus serotina: What is the threat to terricolous bryophytes?] – Eur. J. For. Res. 134: 793-801.
- 26. Halarewicz A., Pruchniewicz D., Kawałko D. 2017 – Black cherry (Prunus serotina) invasion in a Scots pine forest: relationships between soil properties and vegetation – Pol. J. Ecol. 65: 295-302.
- 27. Halarewicz A., Rowieniec A. 2009 – Black cherry Prunus serotina Ehrh. within the area of the Jezierzycy Valley Landscape Park – Sylwan, 153: 635-640 (in Polish, English summary).
- 28. Halarewicz A., Żołnierz L. 2014 – Changes in the understorey of mixed coniferous forest plant communities dominated by the American black cherry (Prunus serotina Ehrh.) – Forest Ecol. Manag. 313: 91-97.
- 29. Hammerschmidt R. 2005 – Phenols and plant-pathogen interactions: the saga continues – Physiol. Mol. Plant. P. 66: 77-78.
- 30. Haugland E., Brandsaeter L. O. 1996 – Experiments on bioassay sensitivity in the study of allelopathy – J. Chem. Ecol. 22: 1845-1859.
- 31. Hättenschwiler S., Vitousek P. M. 2000 – The role of polyphenols in terrestrial ecosystem nutrient cycling – Trends Ecol. Evol. 15: 238-243.
- 32. Hille M., den Ouden J. 2004 – Improved recruitment and early rowth of Scots pine (Pinus sylvestris L.) seedlings after fire and soil scarification – Eur. J. Forest Res. 123: 213-218.
- 33. Hille M., den Ouden J. 2005 – Charcoal and activated carbon as adsorbate of phytotoxic compounds – a comparative study – Oikos, 108: 202-207.
- 34. Inderjit, Callaway R. M. 2003 – Experimental designs for the study of allelopathy – Plant Soil, 256: 1-11.
- 35. Jäderlund A., Zackrisson O., Nilsson M. C. 1996 – Effects of bilberry (Vaccinium myrtillus L.) litter on seed germination and early seedling growth of four boreal tree species – J. Chem. Ecol. 22: 973-986.
- 36. Jäderlund A., Norberg G., Zackrisson O., Dahlberg A., Teketay D., Dolling A., Nilsson M. C. 1998 – Control of bilberry vegetation by steam treatment-effects on seeded Scots pine and associated mycorrhizal fungi – For. Ecol. Manag. 108: 275-285.
- 37. Joanisse G. D., Bradley R. L., Preston C. M., Munson A. D. 2007 – Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia – New Phytol. 175: 535-546.
- 38. Kraus T. E. C., Dahlgren R. A., Zasoski R. J. 2003 – Tannins in nutrient dynamics of forest ecosystems - a review – Plant Soil, 256: 41-66.
- 39. Leavesley H. B., Li L., Prabhakaran K., Borowitz J. L., Isom G. E. 2008 – Interaction of cyanide and nitric oxide with cytochrome c oxidase: implications for acute cyanide toxicity – Toxicol. Sci. 101: 101-111.
- 40. Lewis N. G. and Yamamoto E. 1989 – Tannins – their place in plant metabolism (In: Chemistry and significance of condensed tannins, Eds: R. W. Hemingway, J. J. Karchesy) – Plenum Press, New York, pp. 23-46.
- 41. Li Z-H., Wang Q., Ruan X., Pan C-D., Jiang D-A. 2010 – Phenolics and Plant Allelopathy – Molecules, 15: 8933-8952.
- 42. Lopez-Iglesias B., Olmo m., Gallardo A., Villar R. 2014 – Short-term effects of litter from 21 woody species on plant growth and root development – Plant Soil, 381: 177-191.
- 43. Lorenz K., Preston C. M., Raspe S., Morrison I. K., Feger K-H. 2000 – Litter decomposition and humus characteristics in Canadian and German spruce ecosystems: information from tannin analysis and13C CPMAS NMR – Soil Biol. Biochem. 32: 779-792.
- 44. Nilsson M. C. 1994 – Separation of allelopathy and resource competition by the boreal dwarf-shrub Empetrum hermaphroditum Hagerup – Oecologia, 98: 1-7.
- 45. Nilsson U., Gemmel P., Johansson U., Karlsson M., Welander T. 2002 – Natural regeneration of Norway spruce, Scots pine and birch under Norway spruce shelter-woods of varying densities on a mesic-dry site in southern Sweden – Forest Ecol. Manag. 161: 133-145.
- 46. Norby R. J., Kozlowski T. T. 1980 – Allelopathic potential of ground cover species on Pinus resinosa seedlings – Plant Soil, 57: 363-374.
- 47. Pairon M., Chabrerie O., Mainer Casado C., Jacquemart A. L. 2006 – Sexual regeneration traits linked to black cherry (Prunus serotina Ehrh.) Acta Oecol. invasiveness – 30: 238-247.
- 48. Preston C. M. 1999 – Condensed tannins of salal (Gaultheria shallon Pursh): a contributing factor to seedling ‘growth check’ on northern Vancouver Island? (In: Plant Polyphenols 2 Chemistry, Biology, Pharmacology, Ecology, Eds: G. G. Gross, R. W. Hemingway, R. Yoshida, S. Branham) – Kluwer Academic/Plenum Publishers, New York, pp. 825-841.
- 49. Pruchniewicz D., Halarewicz A. 2019 – Allelopathic effects of wood small-reed (Calamagrostis epigejos) on germination and growth of selected grassland species – Pol. J. Ecol. 67: 122-136.
- 50. Reigosa M. J., González L. 2006 – Forest ecosystems and allelopathy (In: Allelopathy: a physiological process with ecological implications, Eds. M. J. Reigosa, N. Pedrol, L. González) – Springer, Dordrecht, pp. 451-463.
- 51. Robakowski P., Bielinis E. 2011 – Competition between sessile oak (Quercus petraea) and black cherry (Padus serotina): dynamics of seedlings growth – Pol. J. Ecol. 59: 297-306.
- 52. Robakowski P., Bielinis E., Stachowiak J., Mejza I., Bułaj B. 2016 – Seasonal changes affect root prunasin concentration in Prunus serotina and override species interactions between P. serotina and Quercus petraea – J. Chem. Ecol. 42: 202-214.
- 53. Sánchez-Pérez R., Belmonte F. S., Borch J., Dicenta F., Møller B. L., Jørgensen K. 2012 – Prunasin hydrolases during fruit development in sweet and bitter almonds – Plant Physiol. 158: 1916-1932.
- 54. Sarkar E., Chatterjee S. N., Chakraborty P. 2012 – Allelopathic effect of Cassia tora on seed germination and growth of mustard – Turk. J. Bot. 36: 488-494.
- 55. Schilthuizen M., Santos Pimenta L. P., Lammers Y., Steenbergen P. J. et al. 2016 – Incorporation of an invasive plant into a native insect herbivore food web – PeerJ 4: e1954. Website https://peerj.com/articles/1954/[accessed 30 October 2017].
- 56. Schultz J. C. 1989 – Tannin-insect interactions (In: Chemistry and significance of condensed tannins, Eds. R. W. Hemingway, J. J. Karchesy) – Plenum Press, New York, USA, pp. 417-433.
- 57. Starfinger U. 1997 – Introduction and naturalization of Prunus serotina in Central Europe – (In: Plant invasions: studies from North America and Europe, Eds. J. H. Brock, M. Wade, P. Pysek, D. Green) – Backhuys Publishers, Leiden, pp. 161-171.
- 58. Starfinger U., Kowarik I., Rode M., Schepker H. 2003 – From desirable ornamental plant to pest to accepted addition to the flora? The perception of alien tree species through the centuries – Biol. Invasions, 5: 323-335.
- 59. Suding K. N., LeJeune K. D., Seastedt T. R. 2004 – Competitive impacts and responses of an invasive weed: dependencies on nitrogen and phosphorus availability – Oecologia,141: 526-535.
- 60. Tokarska-Guzik B., Dajdok Z., Zając M., Zając A., Urbisz A., Danielewicz W., Hołdyński C. 2012 – [Plants of foreign origin in Poland, with particular reference to invasive species] – GDOŚ, Warszawa (in Polish, English summary).
- 61. Ubalua A. O. 2010 – Cyanogenic glycosides and the fate of cyanide in soil – AJCS 4: 223-237.
- 62. Verheyen K., Vanhellemont M., Stock T., Martin H. 2007 – Predicting patterns of invasion by black cherry (Prunus serotina Ehrh.) in Flanders (Belgium) and its impact on the forest understorey community – Divers. Distrib. 13: 487-497.
- 63. Vickers A. D., Palmer S. C. F. 2000 – The influence of canopy cover and other factors upon the regeneration of Scots pine and its associated ground flora within Glen Tanar National Nature Reserve – Forestry, 73: 37-49.
- 64. Wedin D. A., Tilman D. 1993 – Competition among grasses along a nitrogen gradient: initial conditions and mechanisms of competition – Ecol. Monograph. 63: 199-229.
- 65. Zackrisson O., Nilsson M. C., Dahlberg A., Jaederlund A. 1997 – Interference mechanisms in conifer-Ericaceae-feathermoss communities – Oikos, 78: 209-220.
- 66. Żmuda M., Karolewski P., Giertych M. J., Żytkowiak R., Bąkowski M., Grzebyta J., Oleksyn J. 2008 – The effect of light conditions on leaf injury in underbrush shrubs caused by leaf-eating insects – Acta Sci. Pol. Silv. Colendar. Rat. Ind. Lignar. 7: 47-57.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a90c27d2-39e0-459c-8d45-b858ed217720