Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Following coal mine closures, the impact of flooding on underground mining excavations and on the geomechanical stability of the rock mass has the potential to trigger superficial earthquakes. The generated vibrations may induce damages to the surface infrastructures. Therefore, they represent a significant source of concern for the population. Nowadays, seismic risk assessment procedures in Europe usually build upon the EMS-98, which has been developed for natural tectonic earthquakes. This study aims to investigate the applicability of EMS-98 to seismic events induced by post-mining context while comparing it to a new intensity scale MSIIS-22 adapted to very low intensities from mininginduced earthquakes. To this end, three damage assessment methods are proposed: application of EMS-98 coupled with a semi-empirical vulnerability approach, direct application of MSIIS-22 and its intensity damage correspondence, and adaptation of the semi-empirical vulnerability approach to MSIIS-22 using observed data. This framework is applied to two testing sites that have experienced mining and post-mining-induced seismic events. The results show that damage estimates from the three methods are similar despite differences in the definition of the intensity degrees and damage states. Further data from post-mining-induced seismic events would be needed in order to confirm these preliminary findings.
Wydawca
Czasopismo
Rocznik
Tom
Strony
377--392
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
- Risks and Prevention Division, BRGM, Orleans, France
autor
- Risks and Prevention Division, BRGM, Orleans, France
autor
- Risks and Prevention Division, BRGM, Orleans, France
autor
- Risks and Prevention Division, BRGM, Orleans, France
autor
- Risks and Prevention Division, BRGM, Orleans, France
autor
- Central Mining Institute, National Research Institute, Department of Geology, Geophysics and Surface Protection, Katowice, Poland
Bibliografia
- [1] Dominique P, Aochi H, Morel J. Triggered seismicity in a flooded former coal mining basin (Gardanne Area, France). Mine Water Environ 2022;41(2):317e34. https://doi.org/ 10.1007/s10230-022-00860-z.
- [2] Contrucci I, Namjesnik D, Niemz P, Primo Doncel P, Kotyrba A, Mutke G, et al. European feedback on postmining seismicity. J Sustain Mining 2023. https://doi.org/ 10.46873/2300-3960.1385.
- [3] Gehl P, Dominique P, Aochi H, Delatre M, Kinscher J, Contrucci I. Development of an empirical ground-motion model for post-mining induced seismicity near Gardanne, France. J Sustain Mining 2024;23(2):98e117. https://doi.org/ 10.46873/2300-3960.1408.
- [4] Edwards B, Crowley H, Pinho R, Bommer JJ. Seismic hazard and risk due to induced earthquakes at a shale gas site. Bull Seismol Soc Am 2021;111(2):875e97. https://doi.org/10.1785/ 0120200234.
- [5] Cremen G, Werner MJ, Baptie B. A new procedure for evaluating ground-motion models, with application to hydraulic- fracture-induced seismicity in the United Kingdom. Bull Seismol Soc Am 2020;110(5):2380e97. https://doi.org/ 10.1785/0120190238.
- [6] Broccardo M, Mignan A, Grigoli F, Karvounis D, Rinaldi AP, Danciu L, et al. Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland. Nat Hazards Earth Syst Sci 2020;20(6):1573e93. https://doi.org/10.5194/nhess-20-1573-2020.
- [7] Mignan A, Landtwing D, Kastli P, Mena B, Wiemer S. Induced seismicity risk analysis of the 2006 Basel, Switzerland, Enhanced Geothermal System project: influence of uncertainties on risk mitigation. Geothermics 2015; 53:133e46. https://doi.org/10.1016/j.geothermics.2014.05.007.
- [8] Templeton DC, Schoenball M, Layland-Bachmann C, Foxall W, Guglielmi Y, Kroll K, et al. Recommended practices for managing induced seismicity risk associated with geologic carbon storage (No. LLNL-TR-818759). Livermore, CA (United States): Lawrence Livermore National Lab (LLNL); 2022. https://doi.org/10.2172/1841840.
- [9] Crowley H, Pinho R, van Elk J, Uilenreef J. Probabilistic damage assessment of buildings due to induced seismicity. Bull Earthq Eng 2019;17(8):4495e516. https://doi.org/10.1007/ s10518-018-0462-1.
- [10] Schultz R, Beroza GC, Ellsworth WL. A risk-based approach for managing hydraulic fracturing einduced seismicity. Science 2021;372(6541):504e7. https://doi.org/10.1126/science. abg5451.
- [11] Verdon JP, Bommer JJ. Green, yellow, red, or out of the blue? An assessment of Traffic Light Schemes to mitigate the impact of hydraulic fracturing-induced seismicity. J Seismol 2021;25(1):301e26. https://doi.org/10.1007/s10950- 020-09966-9.
- [12] Schultz R, Beroza GC, Ellsworth WL. A strategy of choosing red-light thresholds to manage hydraulic fracturing induced seismicity in North America. J Geophys Res Solid Earth 2021; 126(12). https://doi.org/10.1029/2021JB022340.
- [13] Van Elk J, Doornhof D, Bommer JJ, Bourne SJ, Oates SJ, Pinho R, et al. Hazard and risk assessments for induced seismicity in Groningen. Neth J Geosci 2017;96(5):259e69. https://doi.org/10.1017/njg.2017.37.
- [14] Crowley H, Pinho R. Report on the fragility and consequence models for the groningen field (version 7). In: Report for Groningen field seismic hazard and risk assessment. NAM; 2020.
- [15] Crowley H, Polidoro B, Pinho R, Van Elk H. Fragility and consequence models for probabilistic seismic risk assessment in the Groningen gas field. In: 16th European conference on Earthquake Engineering, Thessaloniki, Greece; 2018.
- [16] Taig AR, Pickup FE. Risk assessment of falling hazards in earthquakes in the Groningen region. Arup Report 229746032.0REP1008 2016. Available from: http://www.nam. nl/feiten-en-cijfers/onderzoeksrapporten.html.
- [17] Federal Emergency Management Agency (FEMA). HAZUSMH technical manual. Washington D.C: Federal Emergency Management Agency; 2004. Available from: www.fema.gov/ plan/prevent/hazus.
- [18] Lagomarsino S, Giovinazzi S. Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 2006;4:415e43. https:// doi.org/10.1007/s10518-006-9024-z.
- [19] Grünthal G. European macroseismic scale 1998. European Seismological Commission (ESC); 1998.
- [20] Baisch S, Carbon D, Dannwolf U, Delacou B, Devaux M, Dunand F, et al. Deep heat mining Basel: seismic risk analysis. Basel: SERIANEX Group, Departement für Wirtschaft, Soziales und Umwelt des Kantons Basel-Stadt; 2009.
- [21] Camelbeeck T, Van Noten K, Lecocq T, Hendrickx M. The damaging character of shallow 20th century earthquakes in the Hainaut coal area (Belgium). Solid Earth 2022;13(3): 469e95. https://doi.org/10.5194/se-13-469-2022.
- [22] Pilecka E, Stec K, Chodacki J, Pilecki Z, Szermer-Zaucha R, Krawiec K. The impact of high-energy mining-induced tremor in a fault zone on damage to buildings. Energies 2021; 14(14):4112. https://doi.org/10.3390/en14144112.
- [23] Mutke G, Chodacki J, Muszynski L, Kremers S, Fritschen R, Matren PN. Mining seismic instrumental intensity scale MSIIS-15everification in coal basins. In: 5th inter. Symp. Aachen, Germany: Mineral Resources and Mine Development; 2015.
- [24] Mutke G, Gehl P, Contrucci I, Schreiber J, Konicek P, Lurka, et al. Synthesis on Ground motion prediction equation (GMPE). WP5 Seismic hazard and risk assessment e environmental and management aspects. In: Task 5.3 Ground motion prediction equation (GMPE) and spatial variation of ground motions; 2022. PostMinQuake Report D5.3. Funded by RFCS. Grant Agreement number 899192.
- [25] Mutke G, Gehl P, Lurka A, Kotyrba A. Seismic hazard control and prediction of surface adverse effects. In: Sokola- Szewiola V, Kotyrba A, Alheib M, editors. Methods on assessment and monitoring of seismic hazards in coal postmining areas. Silesian University of Technology Publishing House; 2023. p. 36e51. https://doi.org/10.34918/86577. ISBN 978-83-7880-924-1.
- [26] Gehl P, Douglas J, Ayala D. Inferring earthquake groundmotion fields with Bayesian networks. Bull Seismol Soc Am 2017;107(6):2792e808. https://doi.org/10.1785/0120170073.
- [27] Sedan O, Negulescu C, Terrier M, Roulle A, Winter T, Bertil D. Armagedomda tool for seismic risk assessment illustrated with applications. J Earthq Eng 2013;17(2):253e81. https://doi.org/10.1080/13632469.2012.726604.
- [28] Negulescu C, Smai F, Quique R, Hohmann A, Clain U, Guidez R, et al. VIGIRISKS platform, a web-tool for single and multi-hazard risk assessment. Nat Hazards 2023;115: 593e618. https://doi.org/10.1007/s11069-022-05567-6.
- [29] Milutinovic ZV, Trendafiloski GS. Vulnerability of current buildings. RISK-UE, Work Package 4. In: An advanced approach to earthquake risk scenarios with applications to different European towns; 2003.
- [30] Fayjaloun R, Negulescu C, Roulle A, Auclair S, Gehl P, Faravelli M. Sensitivity of earthquake damage estimation to the input data (soil characterization maps and building exposure): case study in the Luchon Valley, France. Geosciences 2021;11(6):249. https://doi.org/10.3390/geosciences 11060249.
- [31] Caprio M, Tarigan B, Worden CB, Wiemer S, Wald DJ. Ground motion to intensity conversion equations (GMICEs): a global relationship and evaluation of regional dependency. Bull Seismol Soc Am 2015;105(3):1476e90. https://doi.org/ 10.1785/0120140286.
- [32] Gehl P, Negulescu C, Vieille J. Damage assessment of postmining earthquakes on buildings and infrastructure. In: Sokola-Szewiola V, Kotyrba A, Alheib M, editors. Methods on assessment and monitoring of seismic hazards in coal post-mining areas. Silesian University of Technology Publishing House; 2023. p. 36e51. https://doi.org/10.34918/86577. ISBN 978-83-7880-924-1.
- [33] Trevlopoulos K, Gehl P, Negulescu C, Crowley H, Danciu L. Comparing components for seismic risk modelling using data from the 2019 Le Teil (France) earthquake. Nat Hazards Earth Syst Sci 2024;24(7):2383e401. https://doi.org/10.5194/ nhess-24-2383-2024.
- [34] Faenza L, Michelini A. Regression analysis of MCS intensity and ground motion spectral accelerations (SAs) in Italy. Geophys J Int 2011;186(3):1415e30. https://doi.org/10.1111/ j.1365-246X.2011.05125. x.
- [35] Atkinson GM, Kaka SI. Relationships between felt intensity and instrumental ground motion in the central United States and California. Bull Seismol Soc Am 2007;97(2):497e510. https://doi.org/10.1785/0120060154.
- [36] Worden CB, Gerstenberger MC, Rhoades DA, Wald DJ. Probabilistic relationships between ground-motion parameters and modified Mercalli intensity in California. Bull Seismol Soc Am 2012;102(1):204e21. https://doi.org/10.1785/ 0120110156.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a909ea47-5116-4c94-94cd-f9f40877bf6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.