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I. INTRODUCTION

The time- and frequency-domain analyses of trans-
former windings were the topic of numerous studies 
such as those documented in [1–14] and [17]. In particu-
lar, the frequency, and the complex s-domain approach, 
has been successfully used in order to derive analytical 
expressions for the voltages current distributions along 
the windings and for identifying their resonance fre-
quencies [4–6].

In reference [7], the winding is represented by cas-
cading a number of generally non-identical ladder cir-
cuits. This is followed by solving the corresponding 
simultaneous differential and algebraic equations. The 
model could be refined by applying an alternative con-
centrated-parameter recursive s-domain analytical solu-
tion technique [8].

References [10], [11] suggest a more accurate and ef-
ficient approach based on the distributed parameter anal-
ysis utilizing  the frequency- and location-dependent A, 
B, C, D circuit constants, adopted from the transmission 
line  theory.

In [12], a direct analytical procedure for analyzing wind-
ings with non-uniform series inductance is presented based 
on the assumption of a quadratic inductance distribution. 
The analysis of windings exhibiting non-uniform inter-
turn insulation capacitance is given in [13]. It is based on 
a time-domain numerical solution of partial differential 
equations with location-dependent coefficients. An ana-
lytical solution is suggested in [14] based on the cascade 
connection of equivalent transmission lines. Relations 
addressing transformers with abruptly changing insula-
tion characteristics at junctions between uniform wind-
ing sections are presented in [17]. This method could 
be successfully applied to the more realistic situations 

involving windings with gradually changing capaci-
tance which can be described by simple mathematical 
functions.

It should be noted that the calculation of the non-uni-
form inductance addressed in [12] was based on the very 
simplifying assumption that the current is uniform along 
the winding. The mutual flux linkage between any two 
turns or sections depends, however, on the geometrical 
details as well as the instantaneous current distribution, 
which is a part of the still unknown solution. Similar 
statements can be also made regarding the inter-turn 
capacitive coupling. This paper tries to provide a rigor-
ous approach to this problem. The procedure will start 
with formulating the two governing integro-differential 
equations of voltage and current, in terms of the wind-
ing data, the voltage or current sources, the neutral point 
treatment and the complex frequency s. 

Analytical relations expressing the non-uniformity of 
the winding’s mutual inductive and capacitive couplings 
will be suggested. They will be helpful in deriving di-
rect solutions of the two equations utilizing the powerful 
built-in features of modern computer packages such as 
Mathematica [15], [16]. The candidate equations for the 
inter-turn mutual couplings will be derived from mea-
sured winding data published elsewhere [2]. In princi-
ple, numerical solutions of the integro-differential equa-
tions may be possible using one of the lengthy available 
standard procedures such as those in [18-20]. Paper [21] 
suggests, however, an alternative straight forward and 
easily programmable solution technique in the frequen-
cy domain. Hosono algorithm, [22], will then be used in 
order to perform the numerical Laplace inversion of the 
derived s-domain expressions for the current and volt-
age distributions. These expressions are available as the 
solution output of the Mathematica program in the form 
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go 	 shunt conductance = 0.15 nS
cm 	 series capacitance (mean value) = 2.07 pF
Its maximum value is cs / 0.6934 as explained later.
gm 	winding insulation conductance = 2.07 nS
lm 	 the winding’s self inductance (mean value) = 0.021 H
	 The maximum value is lm/0.6934.
These parameters are adopted from [8], [13] and [21].

The detailed equivalent circuit of an infinitesimal wind-
ing section of per unit length dx is depicted in Figure 2. In 
addition to the resistances, conductances, the self and 
mutual capacitances, it includes a voltage source. It rep-
resents the sum of all the electromotive forces (EMF) 
induced due to the distributed mutual inductances. 

Figure 3 depicts the dependence of the measured 
values, adopted from [2], of the pu mutual inductance 
between any two sections of coordinates x and y, on 
the magnitude of their separation (y – x) pu. The base 
value of the mutual inductance is 29 mH. The value de-
creases steadily from 29 mH for zero separation to about  
0.292 mH between the first and last sections. In order 
to simplify the analysis, this relation is replaced by the 
approximate separation function:

f (x,y) = [2.8396 – 1.8396 [1 + k (y – x)2 / 2!]]       (1)   

This function has to be an even one with respect to 
(y – x). The coefficient k can assume the values k = 0 or 
k = 1 to describe the cases in which the non-uniformi-
ty of the mutual coupling is either neglected or taken 
into account, respectively. The average value of f (x,y) 
is 0.6934 per unit. As will be discussed later, other pos-
sible mathematical expressions for this function can be 
similarly adopted.

The accuracy of the analysis can be further improved 
if more terms are such as k (y – x)4 / 4!, k (y – x)6 / 6!, etc. 
are added to equation (1). This will also increase the 
complexity of the derivations. Another possible simpler 
approximation for the separation function is described 
by:
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Both approximations (1) and (2) yielded almost iden-
tical numerical results.

The rate of voltage drop at the location x includes the 
resistive and self-inductive parts due to the local cur-
rent i(x) and the integration of all the inductively in-
duced components due to the currents at the other points 
along the entire winding. After some modifications, the 
voltage integro-differential equation will be:	  
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The integro-differential equation of the current i(x) 
can also be derived as follows:

 Fig. 1. The considered transformer winding.

Fig. 2. The equivalent circuit of an infinitesimal winding section 
of length dx per unit.

of two Interpolating and Parametric Functions. Some 
modifications will be needed in order to reduce the cur-
rent and voltage integro-differential equations, which 
deal originally with two independent variables to make 
them in terms of just one single independent variable. In 
addition to results of case studies addressing different 
wave forms for the sources initiating the transients and 
the possible transformer’s neutral treatments, the impact 
of each of parameters’ non-uniformities (inductance or 
capacitance) on the accuracy of computation will be 
addressed. 

II. METHOD OF ANALYSIS

According to Figure 1, adopted from [21], the con-
sidered winding of a total length 1 per unit connects 
the supply point at its sending end with the winding’s 
neutral point. Their co-ordinates are x  =  0 and x  =  1, re-
spectively. The voltage and current distributions along 
the winding are denoted v (x) and i (x), respectively. The 
source voltage is v (0) = e pu. The condition at the neutral 
point is described by: v (1) = ZN.i (1), where ZN is the 
impedance connecting the neutral point to ground.

The winding circuit parameters and their assumed nu-
merical values are as follows:
rseries 	 series resistance = 2.198 Ω  
co 	 shunt (earth) capacitance = 20.7 nF
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After substituting f (x,y) from equation (2) and with 
some simplifications,

( ) ( )

( ) ( ) ( )

( ) )

' 2

1 1
2 2

0 0
1

0

 .( .co ) ( .c ) ((0.9198  1). ( )

1 0.9198  d 0.9198 d

0.3066 0.9198   ( ) 1.8396  ( )d

o m mi x v x s g s g k x v x

k x v x x k x v x x

kv x k xv x kx xv x x

= − + + + − +

+ − − +

+ − +

∫ ∫

∫

(5)

in which s denotes the complex frequency, equal to jω 
for steady state sinusoidal conditions.

If the alternative expression of f (x,y) given by equa-
tion (2) is used, the resulting voltage integro-differential 
equation will be
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and for the current:
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Either one of the two equation pairs (3) & (4) or (6) & 
(7) could be solved by using the Mathematica command 
(ParametricNDSolve). The output will give the results in 
the form of two Interpolating and Parametric Functions 
for the voltages and current at any winding point in terms 
of its co-ordinate x and the angular frequency jω. More 
details are available in [15], [16] and [21]. The Laplace or  
s-expressions v [s,x] and i [s,x] can be easily obtained by 
substituting ω = – js.

The numerical inversion can be obtained according 
to Hosono:
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III. SAMPLE RESULTS

The following are sample results describing the tran-
sient response of the transformer winding to both a unit-
step and an impulse voltage source of the waveform 
e (t) = 1.034 [exp(–t.106 / 16.8) – exp(–t.106 / 0.085) 
where t is the time in seconds. This double-exponen-
tial function has a peak value of 1 per unit occurring at  
t = 1.2 μs  
Four possible connections of the neutral point will be 
considered: solid-earthing, isolated neutral, resistive 
earthing and inductive earthing via a Petersen coil.
The results depict the solutions with and without taking 
the parameter non-uniformities into account. 

Fig. 3. Relation between the per unit mutual inductance between two 
winding section and the magnitude of their per unit separation (y-x).

cm

p



10 Electrical Power Quality and Utilisation, Journal Vol. XX, No. 1, 2017

A. Step- Response

1. Solidly-Earthed Neutral
 

than 22 µs. The natural frequency is accordingly slightly 
higher than 11 kHz. This is in good agreement with the 
results of reference [21]. Again here, the response is 
faster if the parameters’ non-uniformities are not con-
sidered. Due to the energy dissipation in the winding’s 
copper and the dielectric losses, the current curves will 
asymptotically approach the expected final value go = 
0.15 nA/1 V.

3. Resistively-Earthed Neutral

Fig. 4. The unit-step response of solidly-earthed transformer:
Thin curve: both non-uniformities considered, 
Thick curve: both non-uniformities neglected.

Figure 4 shows the source current over the time range 
0 ≤ t ≤ 20 ms. The effect of the different winding capaci-
tances cannot be easily recognized over this time scale. 
In fact, it exhibits some higher frequency oscillations 
that diminish during the first milliseconds. The transient 
is dominated by the resistive and inductive elements. 
Both curves are close to the response of simple series 
RL-circuits. Neglecting the non-uniformity in both the 
capacitances and inductances would lead to faster re-
sponse (the thick curve). In both cases, the current final 
value was found to be 0.455 per unit (or approximately 
1 V/2.198 Ω), as expected.

2. Isolated Neutral
 

Fig. 5. The unit-step response of the transformer with isolated 
neutral:
Thin curve: both non-uniformities considered, 
Thick curve: both non-uniformities neglected.

The wave form of the source current given in Figure 5 
indicates that the magnitude of the input impedance im-
mediately after switching is about 1 kΩ. From the wave 
reflections, the winding travel time is slightly shorter 

Fig. 6. The unit-step response of the transformer with a 10 Ω neu-
tral earthing resistance:
Thin curve: both non-uniformities considered, 
Thick curve: both non-uniformities neglected.

 
According to Figure 6, both curves of the current 

source exhibit the expected final value of 1 V / (10 + 
2.198) Ω = 82 mA. The circuit has an approximate time 
constant of 21 mH / (10 + 2.198) Ω = 1.72131 ms. 

An approximate estimate for the neutral voltage can 
be obtained by multiplying the current values by the 
earthing resistance 10 Ω, with a time delay of about  
25 µs.

4. Inductively-Earthed Neutral

The plots in Figure 7 depict the transients follow-
ing the application of a unit-step source voltage, if the 
transformer’s neutral point is earthed via a pure induc-
tive Petersen coil of a reactance of 5 Ω (at 50 Hz). Its 
inductance is accordingly 16 mH.

The source current plots in Fig, 7-(a) indicate a slow-
er increase in comparison with those in Fig. 4. This is 
due to the increase of the circuit inductance from 21 mH 
to 37 mH. The final values of both current curves are 
0.455 per unit, as expected from DC analysis. The neu-
tral point voltage computed with- and without-  consid-
ering the parameters’ non-uniformities are given in plots 
7-(b). The initial point after the travel time of about 22 
µs is around 0.40 per unit, in good agreement with the 
potential division among the series connected winding’s 
and the Petersen coil’s inductances. The neutral voltage 
will then decay almost exponentially to zero.
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B. Response to an Impulse Voltage

The following results illustrate the winding’s response 
to an impulse voltage source of the waveform 

e (t) = 1.034 [exp(–t.106 / 16.8) – exp(–t.106 / 0.085) 
where t is the time in seconds. This double-exponen-
tial function has a peak value of 1 per unit occurring  
at t = 1.2 μs  

1. Solidly-Earthed Neutral
 
As mentioned earlier, the input impedance immedi-

ately after switching is about 1 kΩ. This explains the ini-
tial value of the source current of about 0.001 per unit. 
After some exponential decay over a time span equal to 
double the winding’s travel time of 22 µs, the current 
then jumps to more than 0.002 per unit. This is due to 
the wave reflection at the neutral with a reflection coef-

ficient of –1. The response is faster if the non-uniformi-
ties are neglected. The current peaks decrease with time 
due to the winding’s copper and dielectric losses. The 
final value of the current is zero.

2. Isolated Neutral

Figure 9 illustrates the source current in the case of 
isolated neutral. Over the time range 0 ≤ t ≤ 44 µs, i.e. 

Fig. 7. The unit-step response of the transformer with Inductive 
neutral earthing:
Top: The source current, 
Bottom: The voltage at the neutral point.
Thin curves: both non-uniformities considered, Thick curves: 
both non-uniformities neglected,

Fig. 8. The response of the solidly-earthed transformer to an impulse volt-
age source of the waveform  e (t) = 1.034 [exp(–t.106 / 16.8) – exp(–t.106 / 0.085), t is the time in seconds 
(shown on the top)
Thin curve: both non-uniformities considered, 
Thick curve: both non-uniformities neglected.

Fig. 9. The response of the transformer with isolated neutral to the 
impulse voltage source 
Thin curve: both non-uniformities considered, 
Thick curve: both non-uniformities neglected.

(a) The source current
 

(b) The voltage at the neutral point
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before twice the winding’s travel or delay time, there is 
no difference between Figures 8 and 9. The reflection at 
the neutral point is manifested by the negative current 
peak of around –0.0018 per unit close to t = 44 µs. The 
magnitude of the positive and negative peaks decrease 
due to the damping introduced by the losses. The final 
value of the source’s current is zero.

3. Resistively-Earthed Neutral

Plots (a) and (b) of Figure 10 show the source cur-
rent and neutral voltage if the transformer’s neutral is 
earthed through a 10 Ω ohmic resistance. Due to this 
relatively small earthing resistance, with respect to the 
winding’s surge impedance of about 1 kΩ, there is no 
difference between these current curves and those of the 
solid-earthing case, Fig. 8. Additional results indicate 
that the parameters’ non-uniformities have a negligible 
effect on the neutral voltage (right plot). It shows that 
the voltage starts to change only after the travel time of 
22 µs elapses. After double this duration, i.e. after wave 
return from a round excursion to the source and back, 
a second voltage rise occurs. The neural current can be 
obtained by dividing the voltage by the 10 Ω earthing 
resistance. 

4. Inductively-Earthed Neutral

(a) Source Current

(b) The voltage at the neutral point

Fig. 10. Response of the transformer source current (top) and 
neutral voltage (bottom)with a resistively-earthed neutral to the 
impulse voltage source 
Thin curve: both non-uniformities considered, 
Thick curve: both non-uniformities neglected.

The transformer’s neutral point is earthed via a 16 mH 
pure inductive Petersen coil. The transient source cur-
rent is shown in Figure 11 and is identical to the previ-
ous cases for 0 ≤ t ≤ 44 µs. The importance of taking the 
non-uniformities into account can be clearly recognized. 
Neglecting them would lead to an erroneous time lead of 
about 5 µs in addition to a considerable increase in the 
positive and negative current peaks.

IV. ACCURACY CONSIDERATIONS

The Relative Impact of Each Non-Uniformity

This section tries to assess the error resulting from ig-
noring one or both of the parameters’ non-uniformities. 
For each of the above-mentioned cases, an additional 
run was made neglecting only the non-uniformity of the 
winding’s capacitance distribution. Typical results are 
given in Figure 12 addressing the response of the trans-
former (with isolated neutral point) to a double-expo-
nential impulse source voltage. The plot includes three 
curves for the source current. The thick one is pertinent 
to the results when neglecting both inductance and ca-
pacitance non-uniformities. The second (thin) trace cor-
responds to the computations with both non-uniformities 
included. The third (dotted) curve gives the results when 

Fig. 11. The response of the transformer with an inductively-
earthed neutral to the impulse voltage source
Thin curve: both non-uniformities considered, 
Thick curve: both non-uniformities neglected.

Fig. 12. The response of the transformer with an inductively-
earthed neutral to the impulse voltage source, 0 ≤ t ≤ 400 µs.
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only the inductance non-uniformity is considered. It can 
be seen that there is practically no difference between 
the thin and dotted curves. This implies that the error re-
sulting from neglecting the capacitance non-uniformity 
is much less than that of not taking the inductance non-
uniformity into account. 

The Choice of The Separation Function f (x,y)

In this section, the results of using the two suggested 
expressions for the separation function f (x,y) are com-
pared. The first one are the quadratic equations for the in-
ductance and capacitance distributions given by Eqn. (1) 
leading to the two integro-differential equations (3) and 
(5). The second alternative expression uses the cosine 
function, yielding the two other alternative equations (6) 
and (7). The corresponding results for the source current 
(with isolated neutral) are depicted in the plots (a) and 
(b) of Figure 13, respectively. The source voltage has a 
unit-step waveform. The two plots are almost identical.

 V.  SUMMARY AND CONCLUSIONS

1.	 The electromagnetic transients in transformer 
windings exhibiting location-dependent inductance 
and capacitance distributions are investigated in the 
time domain. Functions describing this dependence 

are assumed and incorporated in the two inte-
gro-differential equations governing the transient 
voltage and current. They have two independent 
variables and include the winding data, the voltage 
sources, the neutral point treatment and the com-
plex frequency s. Some modifications were needed 
in order to make them in terms of just one single 
independent variable.  

2.	 A numerical procedure is applied in order to get 
frequency domain solutions in the form of inter-
polating functions. Numerical Laplace inversion is 
then applied to the frequency–domain expressions. 
Results pertinent to transients initiated by step- and 
double-exponential impulse sources are presented. 
All possible transformers’ neutral connections are 
considered. 

3.	 The error introduced by neglecting either or both 
of the inductance and capacitance non-uniformi-
ties is addressed. Results indicate that the main 
error component is attributed to neglecting the 
inductance non-uniformity, whereas the impact of 
the capacitance non-uniformity is relatively small. 
In most cases, the winding’s copper and insulation 
losses have a small effect on the transient response.

4.	 Neglecting the non-uniformity in both the capaci-
tances and inductances would lead to an erroneous 
faster response.

5.	 The magnitude of the winding’s input impedance 
immediately after switching is about 1 kΩ and the 
winding travel time is slightly shorter than 22 µs. 
This explains the initial value of the source current 
of about 0.001 per unit and a natural frequency 
which is slightly higher than 11 kHz.

6.	 The results of using two suggested expressions 
for the separation function are compared. The first 
one is a quadratic equation for the inductance and 
capacitance distributions, whereas the second alter-
native expression uses the cosine function. The two 
approaches yield almost identical solutions.
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