PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Face recognition in dense crowd usingdeep learning approaches with IP camera

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Rozpoznawanie twarzy w gęstym tłumieprzy użyciu metod głębokiego uczenia z kamerą IP
Języki publikacji
EN
Abstrakty
EN
A facial recognition system is a biometric security and surveillance system that can identify and monitor individuals in a crowded area. Manually monitoring a crowded environment is a difficult and error-prone task. Therefore, in such contexts, a model that automatically detects and recognises people's faces is needed to improve security. The automation of face recognition brings the benefit of a more efficient and accurate solution. This paper proposes an advanced model that has the ability to detect and recognise faces in dense crowds by using deep learning techniques. Where the input is live video, the process involves splitting the video into frames and each frame is fed into the model. The Multi-Task Cascaded Convolutional Neural Networks (MTCNN) algorithm is used for face detection. It accurately locates faces in frames and images and generates boundaries around the faces as output.The detected faces are then fed as input to a model, where they are compared with data from the database. If a face is recognised, the nameof the recognised person is displayed in the boundary box of the frame, otherwise it is displayed that the person is unknown.FaceNet is used for face recognition tasks.
PL
System rozpoznawania twarzy to biometryczny system bezpieczeństwa i nadzoru, który może identyfikować i monitorować osobyw zatłoczonym obszarze. Ręczne monitorowanie zatłoczonego środowiska jest trudnym i podatnym na błędy zadaniem. Dlatego w takich okolicznościach, aby poprawić bezpieczeństwo, potrzebny jest model, któryautomatycznie wykrywa i rozpoznaje twarze osób. Automatyzacja rozpoznawania twarzy przynosi korzyści w postaci bardziej wydajnego i dokładnego rozwiązania. W niniejszym artykule zaproponowano zaawansowany model, który ma zdolność wykrywania i rozpoznawania twarzy w gęstym tłumie dzięki zastosowaniu technik głębokiego uczenia. W przypadku gdy danymi wejściowymi jest wideo na żywo, proces obejmuje dzielenie wideo na klatki, a każda klatka jest podawana do modelu. Algorytm Multi-Task Cascaded Convolutional Neural Networks (MTCNN) jest używany do wykrywania twarzy. Dokładnie lokalizuje twarze w klatkach i obrazach oraz generuje obwiedniewokół twarzy jako dane wyjściowe. Następnie wykryte twarze są podawane jako dane wejściowe do modelu, w którym są porównywanez danymi z bazy danych. W przypadku rozpoznania twarzy w polu granicznym ramki jest wyświetlane imię rozpoznanej osoby, w przeciwnym razie jest wyświetlana informacja, że osoba jest nieznana. FaceNet jest używany do zadań rozpoznawania twarzy.
Rocznik
Strony
44--50
Opis fizyczny
Bibliogr. 27 poz., fot.
Twórcy
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Computer Science and Engineering, Vijayawada, India
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Artificial Intelligence and Data Science, Vijayawada, India
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Artificial Intelligence and Data Science, Vijayawada, India
  • Velagapudi Ramakrishna Siddhartha Engineering College, Department of Artificial Intelligence and Data Science, Vijayawada, India
  • Advanced Data Processing Research Institute, Departmentof Space, Hyderabad, India
  • Advanced Data Processing Research Institute, Departmentof Space, Hyderabad, India
Bibliografia
  • [1] Ali W., et al.: Classical and modern face recognition approaches: a complete review. Multimedia tools and applications 80, 2021, 4825–4880 [https://dx.doi.org/10.1007/s11042-020-09850-1].
  • [2] Appati J. K., et al.: Analysis and implementation of optimization techniques for facial recognition. Applied Computational Intelligence and Soft Computing 2021, 2021, 6672578 [https://dx.doi.org/10.1155/2021/6672578].
  • [3] Archana M. C. P., Nitish C. K., Harikumar S.: Real time face detection and optimal face mapping for online classes. Journal of Physics: Conference Series 2161(1), 2022 [https://dx.doi.org/10.1088/1742-6596/2161/1/012063].
  • [4] Chandra M. A., Bedi S. S.: Survey on SVM and their application in image classification. International Journal of Information Technology 13(5), 2021, 1–11 [https://doi.org/10.1007/s41870-017-0080-1].
  • [5] Chen W., et al.: YOLO-face: a real-time face detector. The Visual Computer 37, 2021, 805–813 [https://dx.doi.org/10.1007/s00371-020-01831-7].
  • [6] Chong W.-J. L., Chong S.-C., Ong T.-S.: Masked face recognition using histogram-based recurrent neural network. Journal of Imaging 9(2), 2023, 38 [https://dx.doi.org/10.3390/jimaging9020038].
  • [7] Coe J., Atay M.: Evaluating impact of race in facial recognition across machine learning and deep learning algorithms. Computers 10(9), 2021, 113 [https://doi.org/10.3390/computers10090113].
  • [8] Grudzień A., Kowalski M., Pałka N.: Thermal Face Verification through Identification. Sensors 21(9), 2021, 3301 [https://doi.org/10.3390/s21093301].
  • [9] Gu M., Liu X., Feng J.: Classroom face detection algorithm based on improved MTCNN. Signal, Image and Video Processing 16(5), 2022, 1355–1362 [https://doi.org/10.1007/s11760-021-02087-x].
  • [10] Hangaragi S., Singh T., N. N.: Face detection and Recognition using Face Mesh and deep neural network. Procedia Computer Science 218, 2023, 741–749 [https://dx.doi.org/10.1016/j.procs.2023.01.054].
  • [11] Heidari M., Fouladi-Ghaleh K.: Using siamese networks with transfer learning for face recognition on small-samples datasets. International Conference on Machine Vision and Image Processing – MVIP, 2020 [https://dx.doi.org/10.1109/MVIP49855.2020.9116915].
  • [12] Khan A. R., et al.: Face detection in close-up shot video events using video mining. Journal of Advances in Information Technology 14(2), 2023, 160–167 [https://dx.doi.org/10.12720/jait.14.2.160-167].
  • [13] Kong S. G., et al.: Recent advances in visual and infrared face recognition – a review. Computer Vision and Image Understanding 97(1), 2005, 103–135 [https://dx.doi.org/10.1016/j.cviu.2004.04.001].
  • [14] Kumar A., Kumar M., Kaur A.: Face detection in still images under occlusion and non-uniform illumination. Multimedia Tools and Applications 80, 2021, 14565–14590 [https://doi.org/10.1007/s11042-020-10457-9].
  • [15] Lu P., Song B., Xu L.: Human face recognition based on convolutional neural network and augmented dataset. Systems Science & Control Engineering 9(2), 2021, 29–37 [https://doi.org/10.1080/21642583.2020.1836526].
  • [16] Luo Y., et al.: ClawGAN: Claw connection-based generative adversarial networks for facial image translation in thermal to RGB visible light. Expert Systems with Applications 191, 2022, 116269 [https://dx.doi.org/10.1016/j.eswa.2021.116269].
  • [17] Mamieva D., et al.: Improved face detection method via learning small faces on hard images based on a deep learning approach. Sensors 23(1), 2023, 502 [https://doi.org/10.3390/s23010502]
  • [18] Mandal B., Okeukwu A., Theis Y.: Masked face recognition using resnet-50. arXiv preprint arXiv:2104.08997, 2021 [https://doi.org/10.48550/arXiv.2104.08997].
  • [19] Minaee S., et al.: Going deeper into face detection: A survey. arXiv preprint arXiv:2103.14983, 2021 [https://doi.org/10.48550/arXiv.2103.14983].
  • [20] Ming Y., Qian H., Guangyuan L.: CNN‐LSTM Facial Expression Recognition Method Fused with Two‐Layer Attention Mechanism. Computational Intelligence and Neuroscience 2022, 2022, 7450637 [https://dx.doi.org/10.1155/2022/7450637].
  • [21] Onyema E. M., et al.: Enhancement of patient facial recognition through deep learning algorithm: ConvNet. Journal of Healthcare Engineering 2021, 2021, 5196000 [https://dx.doi.org/10.1155/2021/5196000].
  • [22] Schroff F., Kalenichenko D., Philbin J.: Facenet: A unified embedding for face recognition and clustering. IEEE Conference on Computer Vision and Pattern Recognition 2015, 815–823 [https://doi.org/10.1109/CVPR.2015.7298682].
  • [23] Shetty A. B., Rebeiro J.: Facial recognition using Haar cascade and LBP classifiers. Global Transitions Proceedings 2(2), 2021, 330–335 [https://doi.org/10.1016/j.gltp.2021.08.044].
  • [24] Singh G., Goel A. K.: Face detection and recognition system using digital image processing. 2nd International Conference on Innovative Mechanisms for Industry Applications – ICIMIA, 2020 [https://dx.doi.org/10.1109/ICIMIA48430.2020.9074838].
  • [25] Surasak T., et al.: Histogram of oriented gradients for human detection in video. 5th International Conference on Business and Industrial Research – ICBIR, 2015, 172–176 [https://doi.org/10.1109/ICBIR.2018.8391187].
  • [26] Wang M., Deng W.: Deep face recognition: A survey. Neurocomputing 429, 2021, 215–244 [https://doi.org/10.1109/SIBGRAPI.2018.00067].
  • [27] Zeng W., et al.: A masked-face detection algorithm based on M EIOU loss and improved ConvNeXt. Expert Systems with Applications 225, 2023, 120037 [https://dx.doi.org/10.1016/j.eswa.2023.120037].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a905bc6e-731f-49ef-9867-45b8683bc8a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.