PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectral entropy and deep convolutional neural network for ECG beat classification

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sudden cardiac death is the result of abnormal heart conditions. Therefore, early detection of such abnormal conditions is vital to identify heart problems. Hence, in this paper, we aim to present a new computer-aided diagnosis (CAD) method based on time-frequency analysis of electrocardiogram (ECG) signals and deep neural networks for arrhythmia detection. Time-frequency transforms have the capability of providing spectral information at different times, which is very useful for analyzing non-stationary signals. On the other side, entropy is an attractive measurement from ECG signals which can distinguish different types of them. In this paper, time-frequency spectral entropy is proposed to extract the efficient features from ECG signals. All computed entropies cannot provide separability among different classes, two-directional two-dimensional principal component analysis (2D2PCA) can be used to reduce the dimension of the extracted features. Finally, the convolutional neural network (CNN) classifies the time-frequency features to diagnose the ECG beat signals and detect arrhythmias. The results show that the spectral entropy can provide good separation between different among ECG beats and the proposed method outperforms the recently introduced method for analyzing ECG signals.
Twórcy
  • Department of Electrical Engineering, Urmia University, Urmia, Iran
  • Department of Electrical Engineering, Urmia University, Urmia, Iran
  • Cardiologists, Azerbaijan Hospital, Urmia, Iran
Bibliografia
  • [1] Luz EJdS, Schwartz WR, Cámara-Chávez G, Menotti D. ECG-based heartbeat classification for arrhythmia detection: a survey. Comput Methods Programs Biomed 2016;127:144–64.
  • [2] Satija U, Ramkumar B, Manikandan MS. An automated ECG signal quality assessment method for unsupervised diagnostic systems. Biocybern Biomed Eng 2018;38(1):54–70.
  • [3] Karimui RY, Azadi S. Cardiac arrhythmia classification using the phase space sorted by Poincare sections. Biocybern Biomed Eng 2017;37(4):690–700.
  • [4] Tan JH, et al. Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals. Comput Biol Med 2018;94:19–26.
  • [5] Mihandoost S, Amirani MC. Cyclic spectral analysis of electrocardiogram signals based on GARCH model. Biomed Signal Process Control 2017;31:79–88.
  • [6] Edla S, Kovvali N, Papandreou-Suppappola A. Electrocardiogram signal modeling with adaptive parameter estimation using sequential bayesian methods. IEEE Trans Signal Processing 2014;62(10):2667–80.
  • [7] Su K, et al. Human identification using finger vein and ECG signals. Neurocomputing 2019;332:111–8.
  • [8] Goshvarpour A, Abbasi A, Goshvarpour A. An accurate emotion recognition system using ECG and GSR signals and matching pursuit method. Biomed J 2017;40(6):355–68.
  • [9] Osowski S, Linh TH. ECG beat recognition using fuzzy hybrid neural network. IEEE Trans Biomed Eng 2001;48 (11):1265–71.
  • [10] Osowski S, Hoai LT, Markiewicz T. Support vector machine-based expert system for reliable heartbeat recognition. IEEE Trans Biomed Eng 2004;51(4):582–9.
  • [11] Yu S-N, Chen Y-H. Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components. Artif Intell Med 2009;46(2):165–78.
  • [12] Singh R, Mehta R, Rajpal N. Efficient wavelet families for ECG classification using neural classifiers. Procedia Comput Sci 2018;132:11–21.
  • [13] Dong X, Wang C, Si W. ECG beat classification via deterministic learning. Neurocomputing 2017;240:1–12.
  • [14] Jiang W, Kong SG. Block-based neural networks for personalized ECG signal classification. IEEE Trans Neural Netw 2007;18(6):1750–61.
  • [15] Rajpurkar P, Hannun AY, Haghpanahi M, Bourn C, Ng AY. Cardiologist-level arrhythmia detection with convolutional neural networks. arXiv preprint arXiv:170701836 2017.
  • [16] Hannun AY, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 2019;25(1):65.
  • [17] Zhai X, Tin C. Automated ECG classification using dual heartbeat coupling based on convolutional neural network. IEEE Access 2018.
  • [18] Li Y, Pang Y, Wang J, Li X. Patient-specific ECG classification by deeper CNN from generic to dedicated. Neurocomputing 2018;314:336–46.
  • [19] Kiranyaz S, Ince T, Gabbouj M. Real-time patient-specific ECG classification by 1-D convolutional neural networks. IEEE Trans Biomed Eng 2016;63(3):664–75.
  • [20] Yildirim Ö, Plawiak P, Tan R-S, Acharya UR. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med 2018.
  • [21] Zubair M, Kim J, Yoon C. An automated ECG beat classification system using convolutional neural networks. 6th International Conference on IT Convergence and Security (ICITCS); 2016. pp. 1–5.
  • [22] Al Rahhal MM, Bazi Y, AlHichri H, Alajlan N, Melgani F, Yager RR. Deep learning approach for active classification of electrocardiogram signals. Inf Sci (Ny) 2016;345:340–54.
  • [23] Xia Y, et al. An automatic cardiac arrhythmia classification system with wearable electrocardiogram. IEEE Access 2018;6:16529–38.
  • [24] Ochiai K, Takahashi S, Fukazawa Y. Arrhythmia detection from 2-lead ECG using convolutional denoising autoencoders; 2018.
  • [25] Wang G, et al. A global and updatable ECG beat classification system based on recurrent neural networks and active learning. Inf Sci (Ny) 2018.
  • [26] Mathews SM, Kambhamettu C, Barner KE. A novel application of deep learning for single-lead ECG classification. Comput Biol Med 2018.
  • [27] Venkatesan C, Karthigaikumar P, Paul A, Satheeskumaran S, Kumar R. ECG signal preprocessing and SVM classifier-based abnormality detection in remote healthcare applications. IEEE Access 2018;6:9767–73.
  • [28] El-Saadawy H, Tantawi M, Shedeed HA, Tolba MF. Hybrid hierarchical method for electrocardiogram heartbeat classification. IET Signal Process 2017;12(4):506–13.
  • [29] Sahoo S, Kanungo B, Behera S, Sabut S. Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 2017;108:55–66.
  • [30] Golrizkhatami Z, Acan A. ECG classification using three-level fusion of different feature descriptors. Expert Syst Appl 2018;114:54–64.
  • [31] Mondéjar-Guerra V, Novo J, Rouco J, Penedo M, Ortega M. Heartbeat classification fusing temporal and morphological information of ECGs via ensemble of classifiers. Biomed Signal Process Control 2019;47:41–8.
  • [32] Rajesh KN, Dhuli R. Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine. Comput Biol Med 2017;87:271–84.
  • [33] Rajesh KN, Dhuli R. Classification of imbalanced ECG beats using re-sampling techniques and AdaBoost ensemble classifier. Biomed Signal Process Control 2018;41:242–54.
  • [34] Acharya UR, et al. Entropies for automated detection of coronary artery disease using ECG signals: a review. Biocybern Biomed Eng 2018;38(2):373–84.
  • [35] Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 2001;20(3):45–50.
  • [36] Oh SL, Ng EY, San Tan R, Acharya UR. Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput Biol Med 2018;102:278–87.
  • [37] Iravanian S, Tung L. A novel algorithm for cardiac biosignal filtering based on filtered residue method. IEEE Trans Biomed Eng 2002;49(11):1310–7.
  • [38] Li C, Zheng C, Tai C. Detection of ECG characteristic points using wavelet transforms. IEEE Trans Biomed Eng 1995;42 (1):21–8.
  • [39] Matsuyama A, Jonkman M. The application of wavelet and feature vectors to ECG signals. Australas Phys Eng Sci Med 2006;29(1):13.
  • [41] Vakkuri A, et al. Time-frequency balanced spectral entropy as a measure of anesthetic drug effect in central nervous system during sevoflurane, propofol, and thiopental anesthesia. Acta Anaesthesiol Scand 2004;48(2):145–53.
  • [42] Shen J-l, Hung J-w, Lee L-s. Robust entropy-based endpoint detection for speech recognition in noisy environments. Fifth International Conference on Spoken Language Processing 1998.
  • [43] Sharma V, Parey A. A review of gear fault diagnosis using various condition indicators. Procedia Eng 2016;144:253–63.
  • [44] Pan Y, Chen J, Li X. Spectral entropy: a complementary index for rolling element bearing performance degradation assessment. Proc Inst Mech Eng Part C J Mech Eng Sci 2009;223(5):1223–31.
  • [45] Yang J, Zhang DD, Frangi AF, Yang J-y. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 2004.
  • [46] Zhang D, Zhou Z-H. (2D) 2PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 2005;69(1–3):224–31.
  • [47] Chen L-C, Papandreou G, Kokkinos I, Murphy K, Yuille AL. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans Pattern Anal Mach Intell 2018;40(4):834–48.
  • [48] De Prado ML. Advances in financial machine learning. John Wiley & Sons; 2018.
  • [49] Mamli S, Kalbkhani H. Gray-level co-occurrence matrix of Fourier synchro-squeezed transform for epileptic seizure detection. Biocybern Biomed Eng 2019;39(1):87–99.
  • [50] Zhang Y, Dong Z, Wu L, Wang S. A hybrid method for MRI brain image classification. Expert Syst Appl 2011;38 (8):10049–53.
  • [51] Ceylan R. The effect of feature extraction based on dictionary learning on ECG signal classification. Int J Intell Syst Appl Eng 2018;6(1):40–6.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
PL
W opisie bibliogr. brak pozycji nr 40.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9045434-3f07-472a-bf8d-4c4dc434826f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.