PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Interacting particle approximation for nonlocal quadratic evolution problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The existence of McKean's nonlinear jump Markov processes and related Monte Carlo type approximation schemes by interacting particle systems (propagation of chaos) are studied for a class of multidimensional doubly nonlocal evolution problems with a fractional power of the Laplacian and a quadratic nonlinearity involving an integral operator. Asymptotically, these equations model the evolution of density of mutually interacting particles with anomalous (fractal) Lévy diffusion.
Rocznik
Strony
267--286
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Mathematical Institute, University of Wrocław, 50-384 Wrocław, Poland
autor
  • Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153, Japan
  • Department of Statistics and Center for Stochastic and Chaotic Processes in Science and Technology, Case Western Reserve University, Cleveland, Ohio 44106, U.S.A.
Bibliografia
  • [1] C. Bardos, P. Penel, U. Frisch and P. L. Sulem, Modified dissipativity for a non-linear evolution equation arising in turbulence, Arch. Rational Mech. Anal. 71 (1979), pp. 237-256.
  • [2] P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles. III, Colloq. Math. 68 (1995), pp. 229-239.
  • [3] - Local and global solvability of parabolic systems modelling chemotaxis, Adv. Math. Sci. Appl. 8 (1998), pp. 715-743.
  • [4] - T. Funaki and W. A. Woyczynski, Fractal Burgers equations, J. Differential Equations 148 (1998), pp. 9-46.
  • [5] P. Biler, W. Hebisch and T. Nadzieja, The Debye system: existence and large time behavior of solutions, Nonlinear Anal. TMA 23 (1994), pp. 1189-1209.
  • [6] P. Biler, G. Karch and W. A. Woyczynski, Asymptotics for multifractal conservation laws, Studia Math. 135 (1999), pp. 231-252.
  • [7] P. Biler and T. Nadzieja, A class of nonlocal parabolic problems occurring in statistical mechanics, Colloq. Math. 66 (1993), pp. 131-145.
  • [8] P. Biler and W. A. Woyczynski, Global and exploding solutionsfor nonlocal quadratic evolution problems, SIAM J. Appl. Math. 59 (1999), pp. 845-869.
  • [9] M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles: application to the Burgers equation, Ann. Appl. Probab. 6 (1996), pp. 818-861.
  • [10] P. Calderoni and M. Pulvirenti, Propagation of chaos for Burgers' equation, Ann. Inst. H. Poincaré, Phys. Théor. 39 (1983), pp. 85-97.
  • [11] P. Echeverria, A criterion for invariant measures of Markov processes, Z. Wahrsch. verw. Gebiete 61 (1982), pp. 1-16.
  • [12] T. Funaki, A certain class of diffusion processes associated with nonlinear parabolic equations, ibidem 67 (1984), pp. 331-348.
  • [13] - The scaling limit for a stochastic PDE and the separation of phases, Probab. Theory Related Fields 102 (1995), pp. 221-288.
  • [14] - and W. A. Woyczynski, Interacting particle approximation for fractal Burgers equation, in: "Stochastic Processes and Related Topics" - A Volume in Memory of Stamatis Cambanis, 1943-1995, I. Karatzas, B. S. Rajput and M. S. Taqqu (Eds.), Birkhäuser, Boston 1998, pp. 141-166.
  • [15] J. Goodman, Convergence of the random vortex method, Comm. Pure Appl. Math. 40 (1987), pp. 189-220.
  • [16] E. Gutkin and M. Kac, Propagation of chaos and the Burgers equation, SIAM J. Appl. Math. 43 (1983), pp. 971-980.
  • [17] D. B. Henry, How to remember the Sobolev inequalities, in: Lecture Notes in Math. 957, Springer, Berlin 1982, pp. 97-109.
  • [18] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North Holland-Kodansha, Amsterdam-Tokyo 1981.
  • [19] T. Komatsu, On the martingale problem for generators of stable processes with perturbations, Osaka J. Math. 21 (1984), pp. 113-132.
  • [20] - Pseudo-differential operators and Markov processes, J. Math. Soc. Japan 36 (1984), pp. 387-418.
  • [21] S. Kotani and H. Osada, Propagation of chaos for Burgers' equation, ibidem 37 (1985), pp. 275-294.
  • [22] S. Kwapień and W. A. Woyczynski, Random Series and Stochastic Integrals: Single and Multiple, Birkhäuser, Boston 1992.
  • [23] O. A. Ladyženskaja, V. A Solonnikov and N. N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, Amer. Math. Soc., Providence 1988.
  • [24] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaries, Dunod, Paris 1969.
  • [25] J. A. Mann, Jr., and W. A. Woyczynski, Growing fractal interfaces in the presence of self-similar hopping surface diffusion, preprint, 1999, pp. 1-34.
  • [26] H. P. McKean, Propagation of chaos for a class of nonlinear parabolic equations, Lecture Series in Differential Equations, VII, Catholic University, Washington D.C., 1967, pp. 177-194.
  • [27] S. Méléard, Asymptotic behavior of some interacting particle systems, Lecture Notes in Math. 1627, Springer, Berlin 1996, pp. 42-95.
  • [28] H. Osada, Propagation of chaos for the two-dimensional Navier-Stokes equation, in: Taniguchi Symposium "Probabilistic Methods in Mathematical Physics", K. Itô and N. Ikeda (Eds.), 1986, pp. 303-334.
  • [29] M. F. Shlesinger, G. M. Zaslavsky and U. Frisch (Eds.), Lévy Flights and Related Topics in Physics, Lecture Notes in Phys. 450, Springer, Berlin 1995.
  • [30] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer, Berlin 1994.
  • [31] D. W. Stroock, Diffusion processes associated with Lévy generators, Z. Wahrsch. verw. Gebiete 32 (1975), pp. 209-244.
  • [32] A. S. Sznitman, Topics in propagation of chaos, in: École d’été de St. Flour. XIX - 1989, Lecture Notes in Math. 1464, Springer, Berlin 1991, pp. 166-251.
  • [33] D. Talay, Stochastic methods for the numerical solution of PDE's, in: Probabilistic Models for Nonlinear PDE's, D. Talay and L. Tubaro (Eds.), Lecture Notes in Math. 1627, Springer, Berlin 1996, pp. 148-196.
  • [34] W. A. Woyczynski, Burgers-KPZ Turbulence, Göttingen Lectures, Lecture Notes in Math. 1700, Springer, Berlin 1998.
  • [35] W. Zheng, Conditional propagation of chaos and a class of quasilinear PDE's, Ann. Probab. 23 (1995), pp. 1389-1413.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a9039392-d8a7-4a23-afb4-8dc273b8bb80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.