PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of Solar PV System Efficiency in Bangladesh

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
PL
This paper presents a comprehensive review and analysis of the Jamalpur Solar Plant Ltd., a 3.3 MW grid-connected solar photovoltaic (PV) system located in Jamalpur, Bangladesh. The study evaluates the plant's economic and operational performance, revealing a competitive payback period of 10.1 years and a levelized cost of energy (LCOE) of 0.11 USD/kWh. These metrics highlight the plant's financial viability, largely due to the low price of public land used for construction. However, profitability may be challenged if similar projects require significant investments in private land acquisition. Key areas for improvement identified include optimizing the tilt angle and integrating smart automation systems. Additionally, the potential for hybrid renewable energy systems combining solar and wind power is discussed. The paper also provides actionable recommendations for future renewable projects, emphasizing the importance of advanced technologies and supportive policies. These insights aim to inform the optimization of existing solar PV systems and guide the development of future renewable energy projects in Bangladesh, contributing to the country's sustainable energy goals.
Rocznik
Strony
14--22
Opis fizyczny
Bibliogr. 40 poz., fig., tab.
Twórcy
  • University of Asia Pacific Bangladesh, Department of Electrical and Electronic Engineering
  • University of Asia Pacific Bangladesh, Student, Department of Electrical and Electronic Engineering
  • University of Asia Pacific, Bangladesh
Bibliografia
  • [1] Babu, R.M., Basher, E. (2024). Performance Evaluation and Economic Analysis of a Grid-Connected Solar Power Plant: A Case Study of Engreen Sarishabari Solar Plant Ltd. In Bangladesh. Ecological Engineering & Environmental Technology, 25(5), 220-234. https://doi.org/10.12912/27197050/185934.
  • [2] Maliha, Muzammil., Raihan, Uddin, Ahmed. (2019). Solar Home Systems in Bangladesh. Confronting Climate Change in Bangladesh: Policy Strategies for Adaptation and Resilience, 175-192.
  • [3] Hassan, Q., Algburi, S., Sameen, A.Z., Salman, H.M., & Jaszczur, M. (2023). A review of hybrid renewable energy systems: Solar and wind-powered solutions: Challenges, opportunities, and policy implications. Results in Engineering, 101621. https://doi.org/10.1016/j.rineng.2023.101621.
  • [4] Mojumder, M.R.H., Hasanuzzaman, M., & Cuce, E. (2022). Prospects and challenges of renewable energy-based microgrid system in Bangladesh: a comprehensive review. Clean Technologies and Environmental Policy, 24(7), 1987-2009. https://doi.org/10.1007/s10098-022-02301-5.
  • [5] Mahmud, H., & Roy, J. (2021). Barriers to overcome in accelerating renewable energy penetration in Bangladesh. Sustainability, 13(14), 7694. https://doi.org/10.3390/su13147694.
  • [6] M.E., Karim, R., Islam, M.T., Muhammad-Karim Sukki, F., Bani, N.A., & Muhtazaruddin, M.N. (2019). Renewable energy for sustainable growth and development: An evaluation of law and policy of Bangladesh. Sustainability, 11(20), 5774. https://doi.org/10.3390/su11205774.
  • [7] Corti, P., Capannolo, L., Bonomo, P., De Berardinis, P., & Frontini, F. (2020). Comparative analysis of BIPV solutions to define energy and cost-effectiveness in a case study. Energies, 13(15), 3827. https://doi.org/10.3390/en13153827.
  • [8] Mohammad, A., & Mahjabeen, F. (2023). Revolutionizing solar energy: The impact of artificial intelligence on photovoltaic systems. International Journal of Multidisciplinary Sciences and Arts, 2(1). https://doi.org/10.47709/ijmdsa.v2i2.3210.
  • [9] Dranka, G.G., Ferreira, P., & Vaz, A.I.F. (2020). Cost-effectiveness of energy efficiency investments for high renewable electricity systems. Energy, 198, 117198.
  • [10] Chaabane, M., Charfi, W., Mhiri, H., & Bournot, P. (2019). Performance evaluation of solar photovoltaic systems. International journal of green energy, 16(14), 1295-1303. doi: 10.1080/15435075.2019.1671405.
  • [11] Chaladi, S, Ganga, Bhavani., N., Bhanu, Prasad., D., Ravi, Kishore. (2022). Performance Evaluation of solar photovoltaic systems. In 2022 IEEE 2nd International Symposium on Sustainable Energy, Signal Processing and Cyber Security (iSSSC) (pp. 1-6). IEEE.
  • [12] Hasan, S., Hazari, M.R., & Mannan, M.A. (2023). Fuzzy logic-based design optimization and economic planning of a microgrid for a residential community in Bangladesh. In 2023 3rd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST) (pp. 34-39). IEEE.
  • [13] Shiny, S., Beno, M.M., & Rex, C.E.S. (2023). Efficiency Improvement in Smart grid using Enhanced Chaotic Crow Search Optimization. In 2023 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA) (pp. 1-6). IEEE.
  • [14] Ammach, S., & Qaisar, S.M. (2022). A Smart Energy‐Efficient Support System for PV Power Plants. Intelligent Green Technologies for Sustainable Smart Cities, 111-142.
  • [15] Bhatane, G.A., & Gond, V.J. (2023). A Smart Monitoring of Solar PV Panel with Performance Amplification using IoT. In 2023 International Conference on Inventive Computation Technologies (ICICT) (pp. 1367-1370). IEEE. https://doi.org/10.1109/icict57646.2023.10134226.
  • [16] Mansour, R.B., Khan, M.A.M., Alsulaiman, F.A., & Mansour, R.B. (2021). Optimizing the solar PV tilt angle to maximize the power output: A case study for Saudi Arabia. IEEE access, 9, 15914-15928. https://doi.org/10.1109/access.2021.3052933.
  • [17] Davut, Solyali., Amir, Mollaei. (2023). A Simulation Model Based on Experimental Data to Determine the Optimal Tilt Angle for a Fixed Photovoltaic Pane. Archives of Advanced Engineering Science, 1-11. doi: 10.47852/bonviewaaes3202907.
  • [18] Hameedullah, Zaheb., Mikaeel, Ahmadi., H., Fedayi., Atsushi, Yona. (2023). Maximizing Annual Energy Yield in a Grid-Connected PV Solar Power Plant: Analysis of Seasonal Tilt Angle and Solar Tracking Strategies. Sustainability. doi: 10.3390/su151411053.
  • [19] Gomes, Alexandro, Oliveira, Maria, Musci & Marcelo. (2023). Optimal Tilt Angle of Photovoltaic Panels: A Case Study in the City of Rio de Janeiro. Environmental Management and Sustainable Development.12.54.10.5296/emsd.v12i2.20992.
  • [20] Mamun, M.A.A., Islam, M.M., Hasanuzzaman, M., & Selvaraj, J. (2022). Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy and Built Environment,3(3), 278-290.
  • [21] Mohamed, Nageh., Pauzi, Abdullah., Belal, Yousef. (2021). Optimum tilt angle for maximizing large scale solar electrical energy output. Jurnal Teknologi, 83(3), 133-141.
  • [22] Saddamul, Islam., Mohammed, Tarique. (2022). The Implementation of Solar-Wind Cascading Power Station in Bangladesh. iRASD Journal of Energy & Environment, 3(2), 61-71.
  • [23] Abdul Baseer, M., & Alsaduni, I. (2023). A Novel Renewable Smart Grid Model to Sustain Solar Power Generation. Energies, 16(12), 4784. https://doi.org/10.3390/en16124784.
  • [24] Ali, M. (2023). The Implementation of PV-Battery Storage-Wind Turbine-Load-on Grid System. Brilliance: Research of Artificial Intelligence, 3(1), 9-18.
  • [25] Tummala, S.K., Rakesh, G., Al-Kharsan, I.H., & Shah, P. K. (2023). Integration of solar and wind energy systems with PI and PID controller. In E3S Web of Conferences (Vol. 391, p. 01002). EDP Sciences. https://doi.org/10.1051/e3sconf/202339101002.
  • [26] Aghaloo, K., Ali, T., Chiu, Y.R., & Sharifi, A. (2023). Optimal site selection for the solar-wind hybrid renewable energy systems in Bangladesh using an integrated GIS-based BWM-fuzzy logic method. Energy Conversion and Management, 283, 116899. https://doi.org/10.1016/j.enconman.2023.116899.
  • [27] Ahmed, M.R., Hasan, M.R., Al Hasan, S., Aziz, M., & Hoque, M.E. (2023). Feasibility Study of the Grid-Connected Hybrid Energy System for Supplying Electricity to Support the Health and Education Sector in the Metropolitan Area. Energies, 16(4), 1571. https://doi.org/10.3390/en16041571.
  • [28] Md., Mehadi, Hasan, Shamim., Sidratul, Montaha, Silmee., Md., Mamun, Sikder. (2022). Optimization and cost-benefit analysis of a grid-connected solar photovoltaic system. AIMS energy, doi: 10.3934/energy.2022022.
  • [29] Saifullah, M.K., Halder, R., Afroz, S., Shatil, A.H., & Ahmed, K.F. (2023). Design of an off-grid solar-wind-bio hybrid power generation for remote areas of chapainawabgonj district in Bangladesh using homer. In 2 3rd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST) (pp. 56-61). IEEE. https://doi.org/10.1109/icrest57604.2023.10070032.
  • [30] Noman, A.N. (2022). Wind Energy: The Promising Future of Bangladesh Power Sector. ScienceOpen Preprints. https://doi.org/10.14293/s2199-1006.1.sor-.ppgrax2.v1.
  • [31] Supti, S.A. (2022). Renewable Energy and Policy in Bangladesh. In 2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) (pp. 0251-0256). IEEE. https://doi.org/10.1109/uemcon54665.2022.9965627.
  • [32] Halim, M.A., Akter, M.S., Biswas, S., & Rahman, M.S. (2023). Integration of Renewable Energy Power Plants on a Large Scale and Flexible Demand in Bangladesh's Electric Grid-A Case Study. Control Systems and Optimization Letters, 1(3), 157-168. https://doi.org/10.59247/csol.v1i3.48.
  • [33] Shufian, A., Hoque, M.J.A.M., Kabir, S., & Mohammad, N. (2022). Modeling & Economical Analysis of Hybrid Solar-Wind-Biomass-H 2-based Optimal Islanding Microgrid in Bangladesh. In 2022 IEEE 10th Region 10 Humanitarian Technology Conference (R10-HTC) (pp. 61-66). IEEE.
  • [34] Ahmed, N., Hasnaine, Q.R., Mahmud, S., & Thushar, M.I. (2023). Design and Cost Analysis of a Decentralized Hybrid Renewable Energy System-based Microgrid for Insular Rural Area: Hatiya of Bangladesh as an off-grid solution. In 2023 International Conference on Control, Communication and Computing (ICCC) (pp. 1-6). IEEE. https://doi.org/10.1109/iccc57789.2023.10165548.
  • [35] Shafi, I., Khan, H., Farooq, M.S., Diez, I.D.L.T., Miró, Y., Galán, J.C., & Ashraf, I. (2023). An Artificial Neural Network-Based Approach for Real-Time Hybrid Wind–Solar Resource Assessment and Power Estimation. Energies, 16(10), 4171. https://doi.org/10.3390/en16104171.
  • [36] Das, A., Halder, A., Mazumder, R., Saini, V.K., Parikh, J., & Parikh, K.S. (2018). Bangladesh power supply scenarios on renewables and electricity import. Energy, 155, 651-667.
  • [37] Khan, P.A., Halder, P.K., & Rahman, S. (2014). Wind energy potential estimation for different regions of Bangladesh. Int. J. Sustain. Green Energy, 3, 47-52.
  • [38] Al Mamun, K.A., Hossan, M.A., Arafat, M.Y., & Ahmed, S. (2015). Feasibility assessment of wind energy prospect in Bangladesh and a proposal of 2MW wind power plant at ‘Parky Saikat, Chittagong’. In 2015 International Conference on Advances in Electrical Engineering (ICAEE) (pp. 76-79). IEEE.
  • [39] Karim, R., Muhammad-Sukki, F., Hemmati, M., Newaz, M.S., Farooq, H., Muhtazaruddin, M.N., ... & Ardila-Rey, J.A. (2020). Paving towards strategic investment decision: a SWOT analysis of renewable energy in Bangladesh. Sustainability, 12(24), 10674. https://doi.org/10.3390/su122410674.
  • [40] Olabi, A.G., Wilberforce, T., Elsaid, K., Salameh, T., Sayed, E.T., Husain, K.S., & Abdelkareem, M.A. (2021). Selection guidelines for wind energy technologies. Energies, 14(11), 3244.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8fb6a8b-ca4e-4fe1-b420-54372d4b8d97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.