PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency analysis of parallel swarm intelligence using rapid range search in Euclidean space

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Swarm intelligence algorithms are widely recognized for their efficiency in solving complex optimization problems. However, their scalability poses challenges, particularly with large problem instances. This study investigates the time performance of swarm intelligence algorithms by leveraging parallel computing on both central processing units (CPUs) and graphics processing units (GPUs). The focus is on optimizing algorithms designed for range search in Euclidean space to enhance GPU execution. Additionally, the study explores swarm-inspired solutions specifically tailored for GPU implementations, emphasising improving efficiency in video rendering and computer simulations. The findings highlight the potential of GPU-accelerated swarm intelligence solutions to address scalability challenges in large-scale optimization, offering promising advancements in the field.
Słowa kluczowe
Twórcy
  • Wroclaw University of Technology
  • Wroclaw University of Technology
autor
  • Wroclaw University of Technology
Bibliografia
  • [1] Cornell University ECE 4760 - Obsolete Designing with Microcontrollers., “Boids.” [Online]. Available: https://people.ece.cornell.edu/land/courses/ece4760/labs/s2021/Boids/Boids.html
  • [2] I. Michelakos, N. Mallios, E. Papageorgiou, and M. Vassilakopoulos, Ant Colony Optimization and Data Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 31–60.
  • [3] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in Proceedings of the 14th annual conference on Computer graphics and interactive techniques, 1987, pp. 25–34.
  • [4] C. Delgado-Mata, J. Ib´a˜nez-Mart´ınez, S. Bee, R. Ruiz-Rodarte, and R. Aylett, “On the Use of Virtual Animals with Artificial Fear in Virtual Environments,” New Generation Comput., vol. 25, pp. 145–169, 02 2007.
  • [5] C. Hartman and B. Benes, “Autonomous boids.” Journal of Visualization and Computer Animation, vol. 17, pp. 199–206, 01 2006.
  • [6] D. R. Karger, “Advanced Algorithms,” in Advanced Algorithms MIT Course No.6.5210/18.415. MIT OpenCourseWare, 2022. [Online]. Available: https://6.5210.csail.mit.edu/
  • [7] X. Li, W. Cai, and S. J. Turner, “Efficient Neighbor Searching for Agent-Based Simulation on GPU,” ser. DS-RT ’14. USA: IEEE Computer Society, 2014, p. 87–96. [Online]. Available: https://doi.org/10.1109/DS-RT.2014.19
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8f690e7-78be-4959-81da-125fae8eeffc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.