PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of laser treatment technology for boiling heat transfer augmentation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Boiling heat transfer can be enhanced when the heater’s surface morphology is altered. The paper discusses the use of the laser beam to produce efficient heat exchangers. Two types of samples were investigated with distilled water and ethyl alcohol as boiling agents. The specimens differed with the height of the microfins: 0.19 mm and 0.89 mm. It was observed that both of them enhanced boiling heat transfer in comparison to the smooth reference surface. However, the sample with higher micro-fins performed better, especially in the region of low temperature differences, where the heat flux was about three times higher than in the case of the smaller microfins. The comparison of the experimental data with selected models of boiling heat transfer revealed significant differences with regard to the heat flux. The laser-made samples dissipated larger heat fluxes than it could be anticipated according to the models. It might be linked with high surface roughness of the area between the microfins, generated as a result of the laser beam interaction with the surface.
Rocznik
Strony
259--265
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
  • Kielce University of Technology, Faculty of Environmental Engineering, Geodesy and Renewable Energy, al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland
  • Kielce University of Technology, Faculty of Environmental Engineering, Geodesy and Renewable Energy, al. Tysiaclecia P.P. 7, 25-314 Kielce, Poland
  • Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
  • Cracow University of Technology, Faculty of Mechanical Engineering, Al. Jana Pawła II 37, 31-864 Cracow, Poland
Bibliografia
  • 1. Dharmendra, M., Suresh, S., Hafiz, M.A., Udaya Kumar, G. 2020. Investigation to improve the pool boiling heat transfer characteristics using laser textured copper grooved surfaces. Int. J. Photoenergy, 3846157. DOI: 10.1155/2020/3846157
  • 2. Dudkiewicz, E., Szałański, P., 2019. A review of heat recovery possibility in flue gases discharge system of gas radiant heaters. Int. Conf. on Advances in Energy Systems and Environmental Engineering (ASEE19). E3S Web of Conferences, 116, 00017. DOI: 10.1051/e3sconf/201911600017
  • 3. Eid, E.I., Al-Nagdy, A.A., Khalaf-Allah, R.A., 2022. Nucleate pool boiling heat transfer above laser machining heating surfaces with different microcavity geometric shape for water aluminum oxide nanofluid. Experimental Heat Transfer, 35(5), 688-707. DOI: 10.1080/08916152.2021.1946207
  • 4. Grabas, B., 2015. Vibration-assisted laser surface texturing of metals as a passive method for heat transfer enhancement. Experimental Thermal and Fluid Science, 68, 499-508. DOI: 10.1016/j.expthermflusci.2015.06.006
  • 5. Kaniowski, R., Pastuszko, R., 2018. Comparison of heat transfer coefficients of open micro-channels and plain microfins. EPJ Web of Conferences, 180, 02041.DOI: 10.1051/epjconf/201818002041
  • 6. Karthikeyan, A., Coulombe, S., Kietzig, A.M., 2018. Boiling heat transfer enhancement with stable nanofluids and laser textured copper surfaces. International Journal of Heat and Mass Transfer, 126, 287-296. DOI: 10.1016/j.ijheatmasstransfer.2018.05.118
  • 7. Kozłowski, C.A., Ulewicz, M., Walkowiak, W., Girek, T., Jabłońska, J., 2002. The effect of tautomeric rearrangement on the separation of Zn(II) and Cd(II) in ion flotation process with 4-thiazolidinone derivatives. Minerals Engineering, 15(9), 677-682. DOI: 10.1016/S0892-6875(02)00166-8
  • 8. Može, M., Zupančič, M., Hočevar, M., Golobič, I., Gregorčič, P., 2019. Sur-face chemistry and morphology transition induced by critical heat flux incipience on laser-textured copper surfaces. Applied Surface Science, 490, 220–230. DOI: 10.1016/j.apsusc.2019.06.068
  • 9. Mukherjee, S., Ebrahim, S., Mishra, P.C., Ali, N., Chaudhuri, P. A., 2022. Review on Pool and Flow Boiling Enhancement Using Nanofluids: Nuclear Reactor Application. Processes, 10, 177. DOI: 10.3390/pr10010177
  • 10. Mukherjee, S., Wciślik, S., Mishra, P.C., Chaudhuri, P., 2024. Nanofluids: Critical issues, economics and sustainability perspectives. Particuology, 87, 147-172. DOI: 10.1016/j.partic.2023.06.021
  • 11. Nirgude, V.V., Sahu, S.K., 2018. Enhancement in nucleate pool boiling heat transfer on nanosecond laser processed copper surfaces. Experimental Heat Transfer, 566-583. DOI: 10.1080/08916152.2018.1559262
  • 12. Nirgude, V.V., Sahu, S.K., 2020. Heat transfer enhancement in nucleate pool boiling using laser processed surfaces: Effect of laser wavelength and power variation. Thermochimica Acta 694, 178788. DOI: 10.1016/j.tca.2020.178788
  • 13. Nirgude, V.V., Sahu, S.K., 2020. Nucleate boiling heat transfer performance of different laser processed copper surfaces. International Journal of Green Energy, 17:1, 38-47. DOI: 10.1080/15435075.2019.1686000
  • 14. Orman, Ł.J., Radek, N., Pietraszek, J., Szczepaniak, M., 2020. Analysis of Enhanced Pool Boiling Heat Transfer on Laser-Textured Surfaces. Energies 13, 2700. DOI: 10.3390/en13112700
  • 15. Orzechowski, T., 2009. Boiling heat transfer on the fin with laser modified surface, International Symposium on Convective Heat and Mass Transfer in Sustainable Energy, Tunisia, 1–14 DOI: 10.1615/ICHMT.2009.CONV.1110
  • 16. Pastuszko, R., Kaniowski, R., Dadas, N., Bedla-Pawlusek, M., 2021. Pool boiling enhancement and a method of bubble diameter determination on surfaces with deep minichannels. International Journal of Heat and Mass Transfer, 179, 121713 DOI: 10.1016/j.ijheatmasstransfer.2021.121713
  • 17. Piasecka, M., Maciejewska, B., Michalski, D., Dadas, N., Piasecki, A., 2024. Investigations of Flow Boiling in Mini-Channels: Heat Transfer Calculations with Temperature Uncertainty Analyses. Energies, 17, 791 DOI: 10.3390/en17040791
  • 18. Pietraszek, J., 2003. Response surface methodology at irregular grids based on Voronoi scheme with neural network approximator. Neural Net-works and Soft Computing, Advances in Soft Computing, 19, 250-255. DOI: 10.1007/978-3-7908-1902-1_35
  • 19. Pietraszek, J., Gądek-Moszczak, A., 2013. The Smooth Bootstrap Approach to the Distribution of a Shape in the Ferritic Stainless Steel AISI 434L Powders. Solid State Phenomena, 197, 162-167. DOI: 10.4028/www.scientific.net/SSP.197.162
  • 20. Pietraszek, J., Gądek-Moszczak, A., Toruński, T., 2014. Modeling Counting System for PCB Soldered in the Wave Soldering Technology. Advanced Materials Research, 874, 139-143. DOI: 10.4028/www.scien-tific.net/AMR.874.139
  • 21. Radek, N., Pietraszek, J., Antoszewski, B., 2014. The average friction coefficient of laser textured surfaces of silicon carbide identified by RSM methodology. Advanced Materials Research, 874, 29-34. DOI: 10.4028/www.scientific.net/AMR.874.29
  • 22. Radek, N., Pietraszek, J., Goroshko, A., 2018. The impact of laser welding parameters on the mechanical properties of the weld. AIP Conf. Proc. 2017, 020025. DOI: 10.1063/1.5056288
  • 23. Radek, N., Tokar, D., Kalinowski, A., Pietraszek, J., 2021. Influence of laser texturing on tribological properties of DLC coatings. Production Engineering Archives, 27(2), 119-123. DOI: 10.30657/pea.2021.27.15
  • 24. Serdyukov, V., Starinskiy, S., Malakhov, I., Safonov, A., Surtaev, A., 2021. Laser texturing of silicon surface to enhance nucleate pool boiling heat transfer. Applied Thermal Engineering, 194, 117102. DOI: 10.1016/j.applthermaleng.2021.117102
  • 25. Sitar, A., Moze, M., Crivellari, M., Schille, J., Golobic, I., 2020. Nucleate pool boiling heat transfer on etched and laser structured silicon surfaces. International Journal of Heat and Mass Transfer, 147, 118956 DOI: 10.1016/j.ijheatmasstransfer.2019.118956
  • 26. Smirnov, G.F., 1977. Približennaja teorija teploobmena pri kipenii na pover chnostjach pokrytych kapilljarno - poristymi strukturami. Teploenergetika, 9, 77-80.
  • 27. Styrylska, T., Pietraszek, J., 1992. Numerical Modeling of Non-Steady-State Temperature-Fields with Supplementary Data. Zeitschrift für Angewandte Mathematik und Mechanik, 72(6), T537-T539.
  • 28. Szataniak, P., Nový, F., Ulewicz, R., 2014. HSLA Steels - Comparison of Cutting Techniques. METAL 2014: 23rd Int. Conf. on Metallurgy and Materials, 778-783.
  • 29. Ulewicz, M., Walkowiak, W., Brandt, K., Porwolik-Czomperlik, I., 2003. Ion flotation of zinc(II) and cadmium(II) in the presence of side-armed diphosphaza-16-crown-6 ethers. Separation Science and Technology, 38(3), 633-645. DOI: 10.1081/SS-120016655
  • 30. Ulewicz, R., Ulewicz, M., 2020. Problems in the Implementation of the Lean Concept in the Construction Industries. LNCE, 47, 495-500. DOI: 0.1007/978-3-030-27011-7_63
  • 31. Vilhena, L.M., Sedlaček, M., Podgornik, B., Vižintin, J., Babnik, A., Možina, J., 2009. Surface texturing by pulsed Nd:YAG laser. Tribology International, 42, 1496-1504. DOI: 10.1016/j.triboint.2009.06.003
  • 32. Wciślik S., Mukherjee S., 2022. Evaluation of three methods of static contact angle measurements for TiO2 nanofluid droplets during evaporation. Physics of Fluids, 34, 062006. DOI: 10.1063/5.0096644
  • 33. Wojtkowiak J., Amanowicz Ł., Mróz T., 2019. A new type of cooling ceiling panel with corrugated surface - Experimental investigation. International Journal of Energy Research, 43(13), 7275-7286. DOI: 10.1002/er.4753
  • 34. Wong, K.K., Leong, K.C., 2018. Saturated pool boiling enhancement using porous lattice structures produced by Selective Laser Melting. International Journal of Heat and Mass Transfer, 121, 46-63. DOI: 10.1016/j.ijheatmasstransfer.2017.12.148
  • 35. Xin, M.-D., Chao, Y.-D., 1987. Analysis and experiment of boiling heat transfer on T-shaped finned surfaces. Chem. Eng, Comm. 50, 185-199.
  • 36. Zhang, C., Zhang, L., Xu, H., Li, P., Qian, B., 2019. Performance of pool boiling with 3D grid structure manufactured by selective laser melting technique. International Journal of Heat and Mass Transfer, 128, 570-580. DOI: 10.1016/j.ijheatmasstransfer.2018.09.021
  • 37. Zhang J., Li, P., Qian, B., Li, B., Qiu, Z., Xuan, F., 2020. Selective laser melting of G-surface lattice: forming process and boiling heat transfer characteristics. Journal of Nanoparticle Research, 22, 178. DOI: 10.1007/s11051-020-04914-7
  • 38. Zuhlke, C.A., Anderson, T.P., Alexander, D.R., 2013. Formation of multiscale surface structures on nickel via above surface growth and below surface growth mechanisms using femtosecond laser pulses. Optics Express, 21 (7), 8473. DOI: 10.1364/OE.21.008460
  • 39. Zupančič, M., Gregorčič, P., Bucci, M., Wang, C., Aguiar, G.M., Bucci, M., 2022. The wall heat flux partitioning during the pool boiling of water on thin metallic foils. Applied Thermal Engineering, 200, 117638. DOI: 10.1016/j.applthermaleng.2021.117638
  • 40. Zupančič, M., Steinbücher, M., Gregor, P., Golobič, I., 2015. Enhanced pool-boiling heat transfer on laser-made hydrophobic/superhydrophilic polydimethylsiloxane-silica patterned surfaces. Applied Thermal Engineering, 91, 288-297. DOI: 10.1016/j.applthermaleng.2015.08.026
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8f0346a-ac2d-41ae-ba87-25b887b53d7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.