Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The inhibitory effect of water mist on suspended HMX explosions and stacked HMX combustions was investigated. The impact of water mist on HMX explosions was assessed by analyzing variations in flame propagation, explosion pressure and temperature, while its effect on HMX combustions was evaluated by examining changes in the flame extinguishing time. The results reveal that both the explosion pressure and temperature of suspended HMX increase with an increase in mass. Water mist significantly influences the suppression of HMX explosions. The attenuation of explosion pressure and temperature caused by water mist in HMX explosions increases with higher spray pressures. At a spray pressure of 4.0 MPa, the explosion pressure of suspended HMX was measured at only 0.2402 MPa, representing a reduction of 52.0% in peak pressure compared to the scenario without water mist, where the explosion pressure was recorded at 0.5008 MPa. The explosion temperature was recorded at 132 °C, which is 84.3% lower than the temperature of suspended HMX explosions without water mist, measured at 840 °C. The extinguishing time of stacked HMX combustion decreases with increasing spray pressure. At a spray pressure of 4.0 MPa, the extinguishing time of stacked HMX combustion was only 49.00 ms.
Słowa kluczowe
Rocznik
Tom
Strony
46--74
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
autor
- Shanxi North Xing’an Chemical Industry Co., Ltd., Taiyuan 030008, China
autor
- Shanxi Jiangyang Chemical Co., Ltd., Taiyuan 030041, China
autor
- Explosive Engineering and Safety Technology Research Institute of Ordnance Industry, Beijing 100053, China
autor
- Explosive Engineering and Safety Technology Research Institute of Ordnance Industry, Beijing 100053, China
autor
- Shanxi Jiangyang Chemical Co., Ltd., Taiyuan 030041, China
autor
- Explosive Engineering and Safety Technology Research Institute of Ordnance Industry, Beijing 100053, China
autor
- Explosive Engineering and Safety Technology Research Institute of Ordnance Industry, Beijing 100053, China
autor
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, China
Bibliografia
- [1] Braidech, M.M.; Neale, J.A.; Matson, A.F. The Mechanisms of Extinguishment of Fire by Finely Divided Water. New York: Underwriters’ Laboratories Inc., 1955.
- [2] Rasbash, D.J.; Rogowshi, Z.W. Extinction of Fires in Liquids by Cooling with Water Sprays. Combust. Flame 1957, 1(4): 453-466.
- [3] Wighus, R.; Aune, P.; Drangsholt, G. Full Scale Water Mist Experiments. Proc. Int. Conf. Water Mist Fire Suppression Systems, Sweden, 1993.
- [4] Wighus, R. Engineering Relations for Water Mist Fire Suppression Systems. Proc. Halon Alternatives Technical Working Conf., 1995.
- [5] Mawhinney, J.R. Water Mist Fire Suppression Systems: Applications, Principles, and Limitations. Int. Conf. Fire Protection in the HVDC Industry, Vancouver, Canada, 1995.
- [6] Mawhinney, J.R.; Dlugogorski, B.Z.; Kim, A.K. A Closer Look at the Fire Extinguishing Properties of Water Mist. Proc. 4th Int. Assoc. Fire Safety Sci., 1994.
- [7] Han, Z.; Zhang, Y.; Du, Z.; Xu, F.; Li, S.; Zhang, J. New-type Gel Dry-Water Extinguishants and Its Effectiveness. J. Cleaner Prod. 2017, 166: 590-600; https://doi.org/10.1016/j.jclepro.2017.08.005.
- [8] Lu, Z.; Gao, W.; Jiang, H.; Jin, S.; Nie, Z.; Zhao, F. Vented Flame Quenching Mechanism and Overpressure Prediction Model in Aluminum Dust Explosions. Int. J. Therm. Sci. 2025, 210 paper 109623; https://doi.org/10.1016/j.ijthermalsci.2024.109623.
- [9] Li, G.; Gao, W.; Jiang, H.; Liu, J.; Zhao, F.; Jin S.; Lu, Z. Ignition and Combustion of AlH3-Nanoparticles: A Molecular Dynamics study. Combust. Flame 2024, 269 paper 113667; https://doi.org/10.1016/j.combustflame.2024.113667.
- [10] Eriksson, S. Water in Explosive Storage. FortF/F Report C 104, Stockholm, 1974.
- [11] Keenan, W.A.; Wager, P.C. Mitigation of Confined Explosion Effects by Placing Water in Proximity of Explosives. Proc. 25th Department of Defense Explosives Safety Semin., Anaheim, California, 1992.
- [12] Marchand, K.; Oswald, C.; Polcyn, M. Testing and Analysis Done in Support of the Development of a Container for On-Site Weapon Demilitarization. Proc. 27th Department of Defense Explosives Safety Semin., Las Vegas, US-NV, 1996.
- [13] Schwer, D.; Kailasanath, K. Blast Mitigation by Water Mist (1) Simulation of Confined Blast Waves. Naval Research Laboratory, NRL/MR/6410-02-8636, 2002.
- [14] Schwer, D.A.; Kailasanath, K. Numerical Simulations of the Mitigation of Unconfined Explosions Using Water-mist. Proc. Combust. Inst. 2007, 31(2): 2361-2369; https://doi.org/10.1016/j.proci.2006.07.145.
- [15] Resnyansky, A.D.; Delaney, T.G. Experimental Study of Blast Mitigation in a Water Mist. Defence Science and Technology Organisation, DSTO-TR-1944, 2006.
- [16] Willauer, H.D.; Ananth, R.; Williams, F.W. Blast Mitigation Using Water Mist: Test Series II. Naval Research Laboratory, NRL/MR/6180-09-9182, 2009.
- [17] Ananth, R.; Willauer, H.D.; Farley, J.; Wiliamson, F.W. Effects of Fine Water Mist on a Confined Blast. Fire Technol. 2012, 48(3): 641-675; https://doi.org/10.1007/s10694-010-0156-y.
- [18] Jiba, Z.; Sono, T.J.; Mostert, F.J. Implications of Fine Water Mist Environment on the Post-Detonation Processes of a PE4 Explosive Charge in a Semi-Confined Blast Chamber. Def. Technol. 2018, 14(5): 366-372; https://doi.org/10.1016/j.dt.2018.05.005.
- [19] Zhao, H. Water Effects on Shock Wave Delay in Free Fields. Explos. Shock Waves 2001, 21(1): 26-28; https://scispace.com/papers/water-effects-on-shock-wave-delay-in-free-fields-2jl24gvleh.
- [20] Zhao, H. Water Mitigation Effects on Explosion in Confined Chambers. Explos. Shock Waves 2002, 22(3): 252-256; https://scispace.com/papers/water-mitigation-effects-on-explosions-in-confined-chambers-32ohvkm3hn.
- [21] Chen, L.; Zhang, L.; Fang, Q.; Mao, Y. Performance Based Investigation on the Construction of Anti-Blast Water Wall. Int. J. Impact Eng. 2015, 81: 17-33; https://doi.org/10.1016/j.ijimpeng.2015.03.003.
- [22] Zhang, L.; Chen, L.; Fang, Q.; Zhang, Y. Mitigation of Blast Loadings on Structures by An Anti-Blast Plastic Water Wall. J. Cent. South Univ. 2016, 23(2): 461-469; https://doi.org/10.1007/s11771-016-3091-3.
- [23] Xu, H.; Wang, Z.; Hu, H.; Sun, Z.; Shi, G.; Yang, J.; Shen, Z. Experimental Study of Air-gap Effect on Water Mitigation of Confined Explosion. Acta Armamentarii 2016, 37(8): 1443-1448; https://doi.org/10.3969/j.issn.1000-1093.2016.08.015.
- [24] Xu, H.; Zhong, F.; Yang, J.; Zhang, D.. Experimental Study for Effects of Water and Its Container on Explosion Loading Near Explosive. Explos. Shock Waves 2016, 36(4): 525-531; https://doi.org/10.11883/1001-1455(2016)04-0525-07.
- [25] Xu, H. Mechanism and Effect of Water Mitigation on Confined Explosion Loading. University of Science and Technology of China, Hefei, 2020.
- [26] Xu, H.; Cheng, L.; Zhang, D.; Zhang, F.; Shen, Z.; Liu, W.; Huang, S. Mitigation Effects on the Reflected Overpressure of Blast Shock with Water Surrounding An Explosive in a Confined Space. Def. Technol. 2021, 17(3): 1071-1080; https://doi.org/10.1016/j.dt.2020.06.026.
- [27] Li, Y.; Ren, G.; Zhang, W. Water Mitigation Effect Under Internal Blast. Explos. Shock Waves 2017, 37(6): 1080-1086.
- [28] Chen, P.; Hou, H.; Liu, G.; Zhu, X.; Zhang, G. Experimental Investigation on Mitigating Effect of Water Mist on the Explosive Shock Wave Inside Cabin. (in Chinese) Acta Armamentarii 2018, 39(5): 927-933; https://doi.org/10.3969/j.issn.1000-1093.2018.05.012.
- [29] Hu, L.; Liu, Y.; Yang, Y. Inhibition Effect of Water Mist on RDX Dust Explosion. Explos. Shock Waves 2024, 44(5): 055401.
- [30] Liu, Y. Explosion Suppression of Suspended and Stacked Explosives and Propellants by Water Mist. North University of China, Taiyuan, 2021.
- [31] Wei, X.; Hu, S.; Dong, G.; Hu, L.; Cui, C.; Feng, Y.; Yao, Y. Research on Combustion Inhibition of Water Mist on PBXN-5. Explos. Mater. 2021, 50(6): 14-20; https://doi.org/10.3969/j.issn.1001-8352.2021.06.003.
- [32] Adiga, K.C.; Willauer, H.D.; Ananth, R.; Williams, F.W. Implications of Droplet Breakup and Formation of Ultra Fine Mist in Blast Mitigation. Fire Safety J. 2009, 44(3): 363-369; https://doi.org/10.1016/j.firesaf.2008.08.003.
- [33] Log, T. Radiant Heat Attenuation in Fine Water Sprays. Proc. Int. Fire Sci. Eng. Conf., Cambridge, UK, 1996.
- [34] Holborn, P.G.; Battersby, P.; Ingram, J.M.; Averill, A.F.; Nolan, P.F. Modelling the Mitigation of Hydrogen Deflagrations in a Vented Cylindrical Rig with Water Fog and Nitrogen Dilution. Int. J. Hydrogen Energy 2013, 38(8): 3471-3487; https://doi.org/10.1016/j.ijhydene.2012.12.134.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8eeea9c-87b7-486e-97b5-0bd8231894fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.