PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of inverse-distance-weighting 2D interpolation using accelerated decline

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two-dimensional interpolation - or surface fitting - is an approximation tool with applications in geodetic datum transformations, terrain modelling and geoid determination. It can also be applied to many other forms of geographic point data, including rainfall, chemical concentrations and noise levels. The problem of fitting of a smooth continuous interpolant to a bivariate function is particularly difficult if the dataset of control points is scattered irregularly. A typical approach is a weighted sum of data values where the sum of the weights is always unity. Weighting by inverse distance to a power is one approach, although a power greater than 1 is needed to ensure smooth results. One advantage over other methods is that data values can be incorporated into the interpolated surface. One disadvantage is the influence of distant points. A simple cut-off limit on distance would affect continuity. This study proposes a transition range of accelerated decline by means of an adjoining polynomial. This preserves smoothness and continuity in the interpolating surface. Case studies indicate accuracy advantages over standard versions of inverse-distance weighting.
Rocznik
Tom
Strony
9--14
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • School of Architecture, Computing and Engineering, University of East London, Docklands Campus, University Way, London E16 2RD, United Kingdom
Bibliografia
  • 1. Attaouia, B., Salem, K., Boualem, G., and Bachir, G. (2017). Computation of continuous displacement field from GPS data-comparative study with several interpolation methods. In Conference Paper (FIG Working Week 2017: Surveying the world of tomorrow-From digitalisation to augmented reality May 29-June 2, Helsinki Finland).
  • 2. Cho, S.-H., English, B. C., and Roberts, R. K. (2005). A spatial analysis of housing growth. Review of Regional Studies, 35(3):311-335.
  • 3. Franke, R. and Nielson, G. M. (1991). Scattered data interpolation and applications: a tutorial and survey. Geometric Modeling: Methods and Applications, pages 131-160, doi:10.1007/978-3-642-76404-2_6.
  • 4. Gradka, R. and Kwinta, A. (2018). A short review of interpolation methods used for terrain modeling. Geomatics, Landmanagement and Landscape, 4:29-47, doi:10.15576/GLL/2018.4.29.
  • 5. Grgić, M., Varga, M., and Bašić, T. (2016). Empirical research of interpolation methods in distortion modeling for the coordinate transformation between local and global geodetic datums. Journal of surveying engineering, 142(2):05015004, doi:10.1061/(ASCE)SU.1943-5428.0000154.
  • 6. Keckler, D. (1995). The Surfer Manual. Inc.: Golden, CO, USA.
  • 7. Ligas, M., Lucki, B., and Banasik, P. (2022). A crossvalidation-based comparison of kriging and IDW in local GNSS/levelling quasigeoid modelling. Reports on Geodesy and Geoinformatics, 114(1):1-7, doi:10.2478/rgg-2022-0004.
  • 8. Musashi, J. P., Pramoedyo, H., and Fitriani, R. (2018). Comparison of inverse distance weighted and natural neighbor interpolation method at air temperature data in Malang region. CAUCHY: Jurnal Matematika Murni dan Aplikasi, 5(2):48-54, doi:10.18860/ca.v5i2.4722.
  • 9. Ruffhead, A. (1987). An introduction to least-squares collocation. Survey review, 29(224):85-94, doi:10.1179/sre.1987.29.224.85.
  • 10. Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference, Association for Computing Machinery, New York, pages 517-524. doi:10.1145/800186.810616.
  • 11. Sodano, E. M. (1965). General non-iterative solution of the inverse and direct geodetic problems. Bulletin Géodésique (1946-1975), 75:69-89, doi:10.1007/BF02530662.
  • 12. Soycan, M. and Soycan, A. (2003). Surface modeling for GPS-leveling geoid determination. Newton’s Bulletin, 1:41-52.
  • 13. Surfer (2002). Surfer User’s Guide: Contouring and 3D surface mapping for scientists and engineers. Inc.: Golden, CO, USA.
  • 14. Tomczak, M. (1998). Spatial interpolation and its uncertainty using automated anisotropic inverse distance weighting (IDW) – Cross-validation/Jackknife approach. Journal of Geographic Information and Decision Analysis, 2(2):18-30.
  • 15. Woodson, J. (2016). How can I remove the bullseye effect that is created in my Surfer grid? Inc.: Golden, CO, USA.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8ec8584-2797-4650-a653-74914a59150b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.