PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimal threshold detection for Málaga turbulent optical links

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new and generalized statistical model, called Málaga distribution (M distribution), has been derived recently to characterize the irradiance fluctuations of an unbounded optical wave front propagating through a turbulent medium under all irradiance fluctuation conditions. As great advantages associated to that model, we can indicate that it is written in a simple tractable closed-form expression and that it is able to unify most of the proposed statistical models for free-space optical communications derived until now in the scientific literature. Based on that Málaga model, we have analyzed in this paper the role of the detection threshold in a free-space optical system employing an on-off keying modulation technique and involved in different scenarios, and taking into account the extinction ratio associated to the employed laser. First we have derived some analytical expressions for the lower-bound performance of the free-space optical system with the light intensity fading induced by turbulence obtained when the additive white Gaussian noise is not present in the system. Then, we have analyzed the optimal threshold in the system and how it changes when atmospheric conditions vary. Finally, a closed form expression for the bit error rate of that system is derived.
Czasopismo
Rocznik
Strony
577--595
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Department of Photonics Engineering, Technical University of Denmark (DTU), Orsted Plads, Building 358, 2800 Kgs. Lyngby, Denmark
  • Department of Communications Engineering, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
  • Department of Communications Engineering, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
  • Department of Communications Engineering, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
  • Department of Communications Engineering, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
autor
  • Department of Photonics Engineering, Technical University of Denmark (DTU), Orsted Plads, Building 358, 2800 Kgs. Lyngby, Denmark
  • Department of Photonics Engineering, Technical University of Denmark (DTU), Orsted Plads, Building 358, 2800 Kgs. Lyngby, Denmark
Bibliografia
  • [1] ANDREWS L.C., PHILLIPS R.L., Laser Beam Scintillation through Random Media, 2nd Ed., SPIE, 2005.
  • [2] KAZAURA K., WAKAMORI K., MATSUMOTO M., HIGASHINO T., TSUKAMOTO K., KOMAKI S., RoFSO: a universal platform for convergence of fiber and free-space optical communication networks, IEEE Communications Magazine 48(2), 2010, pp. 130–137.
  • [3] JURADO-NAVAS A., GARRIDO-BALSELLS J.M., CASTILLO-VÁZQUEZ M., PUERTA-NOTARIO A., An efficient rate-adaptive transmission technique using shortened pulses for atmospheric optical communications, Optics Express 18(16), 2010, pp. 17346–17363.
  • [4] VEGAS OLMOS J.J., PANG X., LEBEDEV A., SALES LLOPIS M., TAFUR MONROY I., Wireless and wireline service convergence in next generation optical access networks – the FP7 WISCON project, IEICE Transactions on Communications E97-B(8), 2014, pp. 1537–1546.
  • [5] JURADO-NAVAS A., TATARCZAK A., XIAOFENG LU, VEGAS OLMOS J.J., GARRIDO-BALSELLS J.M., TAFUR MONROY I., 850-nm hybrid fiber/free-space optical communications using orbital angular momentum modes, Optics Express 23(26), 2015, pp. 33721–33732
  • [6] AL-HABASH M.A., ADREWS L.C., PHILLIPS R.L., Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media, Optical Engineering 40(8), 2001, pp. 1554–1562.
  • [7] JURADO-NAVAS A., GARRIDO-BALSELLS J.M., PARIS J.F., PUERTA-NOTARIO A., A unifying statistical model for atmospheric optical scintillation, [In] Numerical Simulations of Physical and Engineering Processes, [Ed.] Awrejcewicz J., In-Tech, 2011, pp. 181–206.
  • [8] GARRIDO-BALSELLS J.M., JURADO-NAVAS A., PARIS J.F. CASTILLO-VÁZQUEZ M., PUERTA-NOTARIO A., General analytical expressions for the bit error rate of atmospheric optical communicatino systems: erratum, Optics Letters 39(20), 2014, pp. 5896–5896.
  • [9] JURADO-NAVAS A., GARRIDO-BALSELLS J.M., CASTILLO-VÁZQUEZ M., PUERTA-NOTARIO A., Closed-form expressions for the lower-bound performance of variable weight multiple pulse-position modulation optical links through turbulent atmospheric channels, IET Communications 6(4), 2012, pp. 390–397.
  • [10] JURADO-NAVAS A., GARRIDO-BALSELLS J.M., CASTILLO-VÁZQUEZ M., PUERTA-NOTARIO A., Numerical model for the temporal broadening of optical pulses propagating through weak atmospheric turbulence, Optics Letters 34(23), 2009, pp. 3662–3664.
  • [11] YOUNG C.Y., ANDREWS L.C., ISHIMARU A., Time-of-arrival fluctuations of a space–time Gaussian pulse in weak optical turbulence: an analytic solution, Applied Optics 37(33), 1998, pp. 7655–7660.
  • [12] XIAOMING ZHU, KAHN J.M., Free-space optical communication through atmospheric turbulence channels, IEEE Transactions on Communications 50(8), 2002, pp. 1293–1300.
  • [13] JURADO-NAVAS A., GARRIDO-BALSELLS J.M., CASTILLO-VÁZQUEZ M., PUERTA-NOTARIO A., A computationally efficient numerical simulation for generating atmospheric optical scintillations, [In] Numerical Simulations of Physical and Engineering Processes, [Ed.] Awrejcewicz J., In-Tech, 2011, pp. 157–180.
  • [14] GARCIA-ZAMBRANA A. PUERTA-NOTARIO A., Improving PPM schemes in wireless infrared links at high bit rates, IEEE Communications Letters 5(3), 2001, pp. 95–97.
  • [15] KAHN J.M., KRAUSE W.J., CARRUTHERS J.B., Experimental characterization of non-directed indoor infrared channels, IEEE Transactions on Communications 43(2/3/4), 1995, pp. 1613–1623.
  • [16] AHARONOVICH M., ARNON S., Performance improvement of optical wireless communication through fog with a decision feedback equalizer, Journal of the Optical Society of America A 22(8), 2005, pp. 1646–1654.
  • [17] GRADSHTEYN I.S., RYZHIK I.M., Table of Integrals, Series and Products, 7th Ed., Academic Press, New York, 2007.
  • [18] XIAOMING ZHU, KAHN J.M., Pilot-symbol assisted modulation for correlated turbulent free-space optical channels, Proceedings of SPIE 4489, 2002, pp. 138–145.
  • [19] MORADI H., REFAI H.H., LOPRESTI P.G., Thresholding-based optimal detetion of wireless optical signals, Journal of Optical Communications and Networking 2(9), 2010, pp. 689–700.
  • [20] Wolfram, http://functions.wolfram.com
  • [21] ANSARI I.S., AL-AHMADI S., YILMAZ F., ALOUINI M.S., YANIKOMEROGLU H., A new formula for the BER of binary modulations with dual-branch selection over generalized-K composite fading channels, IEEE Transactions on Communications 59(10), 2011, pp. 2654–2658.
  • [22] KIUCHI H., KAWANISHI T., YAMADA M., SAKAMOTO T., TSUCHIYA M., AMAGAI J., IZUTSU M., High extinction ratio Mach–Zehnder modulator applied to a highly stable optical signal generator, IEEE Transactions on Microwave Theory and Techniques 55(9), 2007, pp. 1964–1972.
  • [23] SUHR L.F., VEGAS OLMOS J.J., MAO B., XU X., LIU G.N., TAFUR MONROY I., 112-Gbit/s × 4-lane duobinary-4-PAM for 400GBase, [In] 2014 The European Conference on Optical Communication (ECOC), 2014, pp. 1–3.
  • [24] PRINCE K., MING MA, GIBBON T., NEUMEYR C., RÖNNEBERG E., ORTSIEFER M., MONROY I.T., Free-running 1550 nm VCSEL for 10.7 Gb/s transmission in 99.7 km PON, IEEE/OSA Journal of Optical Communications and Networking 3(5), 2011, pp. 399–403.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8ec31a0-f279-43b6-8e09-13b9e67ae03e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.