PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Facial graceful coloring of plane graphs

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let G be a plane graph. Two edges of G are facially adjacent if they are consecutive on the boundary walk of a face of G. A facial edge coloring of G is an edge coloring such that any two facially adjacent edges receive different colors. A facial graceful k-coloring of G is a proper vertex coloring c : V (G) → {1, 2, . . . , k} such that the induced edge coloring c′ : E(G) → {1, 2, . . . , k−1} defined by c′(uv) = |c(u)−c(v)| is a facial edge coloring. The minimum integer k for which G has a facial graceful k-coloring is denoted by χfg(G). In this paper we prove that χfg(G) ≤ 14 for every plane graph G and χfg(H) ≤ 9 for every outerplane graph H. Moreover, we give exact bounds for cacti and trees.
Słowa kluczowe
Rocznik
Strony
815--825
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
  • Technical University of Košice, Faculty of Economics, Department of Applied Mathematics and Business Informatics, Němcovej 32, 040 01 Košice, Slovakia
Bibliografia
  • [1] M.L. Asy’ari, Dafik, I.H. Agustin, R. Nisviasari, R. Adawiyah, On graceful chromatic number of some graphs, J. Phys.: Conf. Ser. 2157 (2022), 012013.
  • [2] R. Alfarisi, Dafik, R.M. Prihandini, R. Adawiyah, E.R. Albirri, I.H. Agustin, Graceful chromatic number of unicyclic graphs, J. Phys.: Conf. Ser. 1306 (2019), 012039.
  • [3] Z. Bi, A. Byers, S. English, E. Laforge, P. Zhang, Graceful colorings of graphs, J. Combin. Math. Combin. Comput. 101 (2017), 101–119.
  • [4] Z. Bi, A. Byers, P. Zhang, Revisiting graceful labelings of graphs, J. Combin. Math. Combin. Comput. 102 (2017), 141–158.
  • [5] J. Czap, S. Jendroľ, Facially-constrained colorings of plane graphs: a survey, Discrete Math. 340 (2017), 2691–2703.
  • [6] J. Czap, S. Jendroľ, Facial colorings of plane graphs, J. Interconnect. Netw. 19 (2019), 1940003.
  • [7] S. English, P. Zhang, On graceful colorings of trees, Math. Bohem. 142 (2017), 57–73.
  • [8] P. Erdős, P. Turán, On some sequences of integers, J. Lond. Math. Soc. 11 (1936), no. 4, 261–264.
  • [9] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2023), #DS6.
  • [10] S. Khoirunnisa, Dafik, A.I. Kristiana, R. Alfarisi, E.R. Albirri, On graceful chromatic number of comb product of ladder graph, J. Phys.: Conf. Ser. 1836 (2021), 012027.
  • [11] D. Kráľ, T. Madaras, R. Škrekovski, Cyclic, diagonal and facial colorings, European J. Combin. 26 (2005), 473–490.
  • [12] A.I. Kristiana, D. Setyawan, E.R. Albirri, R.M. Prihandini, R. Alfarisi, On graceful coloring of generalized Petersen graphs, Discrete Math. Algorithms Appl. (2023), 2350097.
  • [13] D. Laavanya, S.D. Yamini, A structural approach to the graceful coloring of a subclass of trees, Heliyon 9 (2023), e19563.
  • [14] R. Mincu, C. Obreja, A. Popa, The graceful chromatic number for some particular classes of graphs, Int. Symp. SYNASC (2019), 109–115.
  • [15] M. Montassier, A. Raspaud, A note on 2-facial coloring of plane graphs, Inform. Process. Lett. 98 (2006), 235–241.
  • [16] C. Obreja, Results on graceful chromatic number for particular graphs, Int. Symp. SYNASC (2020), 109–116.
  • [17] A. Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (Int. Symp. Rome 1966), (1967), 349–355.
  • [18] T.L. Saaty, P.C. Kainen, The Four-Color Problem, Assaults and Conquest, McGraw-Hill, London, 1977.
  • [19] I.N. Suparta, Y. Lin, R. Hasni, I.N. Budayana, On odd-graceful coloring of graphs, Commun. Comb. Optim. (2023).
  • [20] I.N. Suparta, M. Venkathacalam, I.G.A. Gunadi, P.A.C. Pratama, Graceful chromatic number of some Cartesian product graphs, Ural Math. J. 9 (2023), 193–208.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8e6cf20-6d58-482e-9adb-a2a927968997
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.