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FACIAL GRACEFUL COLORING OF
PLANE GRAPHS
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Abstract. Let G be a plane graph. Two edges of G are facially adjacent if they are
consecutive on the boundary walk of a face of G. A facial edge coloring of G is an edge
coloring such that any two facially adjacent edges receive different colors. A facial
graceful k-coloring of G is a proper vertex coloring c : V (G) → {1, 2, . . . , k} such that
the induced edge coloring c′ : E(G) → {1, 2, . . . , k−1} defined by c′(uv) = |c(u)−c(v)|
is a facial edge coloring. The minimum integer k for which G has a facial graceful
k-coloring is denoted by χfg(G). In this paper we prove that χfg(G) ≤ 14 for every
plane graph G and χfg(H) ≤ 9 for every outerplane graph H. Moreover, we give exact
bounds for cacti and trees.
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1. INTRODUCTION

In 1967, Alexander Rosa published a paper [17] which has served as a starting point
and motivation for many interesting problems (see e.g. [9]). One of these problems
is the following. A proper vertex coloring c : V (G) → {1, 2, . . . , k} of a graph G is
called a graceful k-coloring if the edge coloring c′ defined by c′(uv) = |c(u) − c(v)|
for every edge uv of G is also proper. The minimum integer k for which G has
a graceful k-coloring is called the graceful chromatic number of G, denoted by χg(G).
The task is to determine χg(G) for a given graph G. This concept was introduced
by Bi et al. [3, 4] in 2017 and has attracted quite some attention since then. The
parameter χg(G) is well defined because if we color the vertices of an n-vertex graph
with colors 20, 21, 22, . . . , 2n−1 we obtain a graceful coloring. Observe that, if G is
a graph with maximum degree ∆, then χg(G) ≥ ∆ + 1. A lower bound for χg(G) in
terms of the minimum degree of G was obtained by English and Zhang [7]. If G is
a graph with minimum degree δ ≥ 2, then χg(G) ≥

⌈ 5
3 δ

⌉
. In [3], it is shown that if G

is a graph of order n such that δ(G) > n
2 , then χg(G) > n.

Graceful colorings of trees have been intensively studied. It is known that if G
is a tree with maximum degree ∆, then χg(G) ≤

⌈ 5
3 ∆

⌉
and this bound is the best
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possible, see [3, 7]. Laavanya and Yamini [13] determined the exact values of χg(G) for
trees with maximum degree 4. Bi et al. [3] determined the graceful chromatic number
of all caterpillars. English and Zhang [7] derived the exact values of the graceful
chromatic number for a class of rooted trees.

Suparta et al. [20] investigated the graceful chromatic number of the Cartesian
products Cm × Pn for m ≥ 3, n ≥ 2, and Cm × Cn for m, n ≥ 3, where Cm and
Pm denote the cycle and the path with m vertices, respectively. Kristiana et al. [12]
investigated the graceful chromatic number of some generalized Petersen graphs.
Graceful colorings of special graphs can be found in conference papers [1, 2, 10, 14, 16].

If a graceful coloring satisfies the additional property that every induced edge
color is odd, then it is called an odd-graceful coloring. Such a coloring was studied by
Suparta et al. [19]. They showed that if a graph admits an odd-graceful coloring, then
it is bipartite. They derived upper bounds for the odd-graceful chromatic number of
caterpillars, ladders, and prisms.

In this paper we consider facial graceful coloring of plane graphs. A graph is planar,
if it can be drawn in the plane so that its edges intersect only at their endvertices.
A plane graph is a particular drawing of a planar graph in the Euclidean plane R2 such
that no edges intersect except at their endvertices. Let G be a plane graph with vertex
set V (G) and edge set E(G). The connected components of R2 \ G form the set F (G)
of faces of G. Each plane graph has exactly one unbounded face, called the outer face.
Outerplane graphs are plane graphs such that every vertex is incident with the outer
face. The rotation at a vertex v of G is the clockwise order of its incident edges. Two
edges e1, e2 of G are facially adjacent if they have a common endvertex, say v, and
they are consecutive in the rotation at v. A facial edge coloring of a plane graph G is
an edge coloring such that no two facially adjacent edges are assigned the same color.
Facial edge coloring was studied already in the last century (see e.g. [18]) but serious
progress in this area has been achieved only in the last years, see [5, 6]. Observe that
the classical proper edge coloring and the facial edge coloring coincide in the class of
subcubic plane graphs.

A facial graceful k-coloring of a plane graph G is a proper vertex coloring
c : V (G) → {1, 2, . . . , k} such that the induced edge coloring c′ :E(G)→{1, 2, . . . , k−1}
defined by c′(uv) = |c(u) − c(v)| is a facial edge coloring. The minimum integer k for
which G has a facial graceful k-coloring is called the facial graceful chromatic number
of G, denoted by χfg(G). By the above mentioned observation we have χfg(G) = χg(G)
for every plane graph with maximum degree at most 3.

In this paper we prove that χfg(G) ≤ 14 for every plane graph G and χfg(H) ≤ 9
for every outerplane graph H. Moreover, we obtain tight upper bounds for the facial
graceful chromatic number in the classes of cacti and trees.

2. GENERAL UPPER BOUND

A vertex coloring of a plane graph is an ℓ-facial coloring if any two distinct vertices on
a facial walk of length ℓ have distinct colors. Notice that 1-facial coloring is the usual
proper coloring. Observe that any facial graceful coloring is a 2-facial coloring, but
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not every 2-facial coloring is a facial graceful one. The tree T depicted in Figure 1 has
a 2-facial coloring with colors 1, 2, 3, 4, but no such coloring is a facial graceful one.
In any 2-facial coloring of T , the vertices a, b, c, d receive different colors and no such
coloring (with colors 1, 2, 3, 4) can be extended to a facial graceful coloring of the
whole tree T .

cb

a

d

Fig. 1. The tree T

Lemma 2.1. Let c be a vertex coloring of a plane graph G. Then c is a facial graceful
coloring of G if and only if

(i) c is a 2-facial coloring, and
(ii) c(y) ̸= c(x)+c(z)

2 for any two facially adjacent edges xy and yz.
Proof. Let xy and yz be two facially adjacent edges of G. Let c be a vertex coloring of G.

If c is a facial graceful coloring, then c(x) ̸= c(y) and c(y) ̸= c(z), since c is
a proper coloring. Moreover, c(x) ̸= c(z), otherwise |c(x) − c(y)| = |c(y) − c(z)|. So c

is a 2-facial coloring. Next, c(y) ̸= c(x)+c(z)
2 , since otherwise |c(x)−c(y)| = |c(y)−c(z)|.

Now assume that c satisfies the conditions (i) and (ii). By (i), c is a proper coloring.
Suppose to the contrary that |c(x) − c(y)| = |c(y) − c(z)|.

First assume that c(y) > max{c(x), c(z)}. In this case

c(y) − c(x) = |c(x) − c(y)| = |c(y) − c(z)| = c(y) − c(z),

which implies c(x) = c(z), a contradiction.
If c(y) < min{c(x), c(z)}, then

c(x) − c(y) = |c(x) − c(y)| = |c(y) − c(z)| = c(z) − c(y),

which implies c(x) = c(z), a contradiction.
Finally, without loss of generality, assume that c(x) < c(y) and c(z) > c(y).

In this case c(y) − c(x) = |c(x) − c(y)| = |c(y) − c(z)| = c(z) − c(y), which implies
c(y) = c(x)+c(z)

2 , a contradiction.

A subset {a1, a2, . . .} of the set {1, 2, . . . , n} is called 3-AP-free if it does not contain
any three elements ap, aq, ar such that ap − aq = aq − ar, i.e. it does not contain any
three consecutive members of an arithmetic progression. By r(n) we denote the
cardinality of the largest such subset. The study of the function r(n) was initiated
by Erdős and Turán [8] in 1936, and since the study of r(n) has attracted a lot of
attention. Nevertheless, the exact value of r(n) is known only for a few n. Table 1
contains the values of r(n) and also an example of the largest 3-AP-free set for n ≤ 14.
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Table 1

n r(n) one of the largest 3-AP-free sets
1 1 {1}
2, 3 2 {1, 2}
4 3 {1, 2, 4}
5, 6, 7, 8 4 {1, 2, 4, 5}
9, 10 5 {1, 2, 4, 8, 9}
11, 12 6 {1, 2, 4, 5, 10, 11}
13 7 {1, 2, 4, 5, 10, 11, 13}
14 8 {1, 2, 4, 5, 10, 11, 13, 14}

In general, the largest 3-AP-free sets are not necessarily unique. For ex-
ample, there are six such sets, namely {1, 2, 4, 5, 10, 11, 13}, {1, 2, 4, 5, 10, 12, 13},
{1, 2, 4, 8, 10, 11, 13}, {1, 2, 4, 9, 10, 12, 13}, {1, 3, 4, 6, 10, 12, 13}, and {1,3,4,9,10,12,13},
for n = 13. On the other hand, the largest 3-AP-free set is unique for n = 14.
Lemma 2.2. Let c be a 2-facial coloring of a plane graph G. If the set of colors used
by c is 3-AP-free, then c is a facial graceful coloring.
Proof. Suppose that c is a 2-facial coloring, the set of colors used by c is 3-AP-free,
but c is not a facial graceful coloring. Then, by Lemma 2.1, c(y) = c(x)+c(z)

2 for some
two facially adjacent edges xy and yz. This implies that c(x) − c(y) = c(y) − c(z),
so the colors c(x), c(y), c(z) form an arithmetic progression, a contradiction.

Theorem 2.3. If G is a plane graph, then χfg(G) ≤ 14.
Proof. Kráľ, Madaras, and Škrekovski [11] proved that every plane graph admits
a 2-facial coloring with at most 8 colors. If we use the colors from the 3-AP-free set
{1, 2, 4, 5, 10, 11, 13, 14} in a 2-facial coloring of G, then, by Lemma 2.2, we obtain
a facial graceful coloring.

If a plane graph G contains the configuration depicted in Figure 2, then χfg(G) ≥ 7.
Consequently, there is a plane graph G such that χfg(G) = 7.

7

4 2

5

3 6

1

Fig. 2. A configuration with no facial graceful 6-coloring

Problem 2.4. Is there a plane graph G such that χfg(G) ≥ 8?
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Theorem 2.5. If G is an outerplane graph, then χfg(G) ≤ 9.

Proof. Montassier and Raspaud [15] proved that every outerplane graph has a 2-facial
coloring using at most 5 colors. If we use the colors from the 3-AP-free set {1, 2, 4, 8, 9}
in a 2-facial coloring of G, then we obtain a facial graceful coloring.

By Theorem 3.4, there are outerplane graphs with χfg(G) = 6.

Problem 2.6. Is there an outerplane graph G such that χfg(G) ≥ 7?

3. FACIAL GRACEFUL COLORING OF CACTI

An edge of a plane graph not incident with the outer face is called inner edge. A cactus
is a connected outerplane graph with no inner edges (i.e., a connected outerplane
graph in which any two cycles have at most one vertex in common). A vertex v of
a graph G is a cut-vertex if G − v has more components than G.

Theorem 3.1 ([3]). Let Cn be the cycle on n ≥ 3 vertices. Then χfg(C5) = 5 and
χfg(Cn) = 4 for n ̸= 5.

Corollary 3.2. In every facial graceful 5-coloring of C5 all five colors 1, 2, 3, 4, 5
appear on the vertices of C5. If n ̸= 5, then in every facial graceful 4-coloring of Cn

the colors 1 and 4 appear on some vertices.

Lemma 3.3. Let Cn be the cycle on n ≥ 3 vertices and let i ∈ {1, 2, 3, 4, 5, 6}. Then
there is a facial graceful coloring c : V (Cn) → {1, 2, 3, 4, 5, 6} such that at least one
vertex receives color i.

Proof. Let Cn = v1v2 . . . vnv1 and let c be a facial graceful coloring of Cn. Observe
that the coloring c′ defined by c′(vi) = c(vi) + 1 is also a facial graceful one. Hence,
Corollary 3.2 guarantees the existence of a required coloring.

Theorem 3.4. If G is a cactus, then χfg(G) ≤ 6. Moreover, this bound is tight.

Proof. Suppose there is a counterexample to Theorem 3.4. Let G be a counterexample
with the minimum number of vertices.

First assume that the minimum degree of G is 1. Let u be a vertex of degree 1 in G
and let v be its neighbor. Let vx and vy be the edges facially adjacent to vu (x = y if
the vertex v has degree two). The graph G − u is a cactus with fewer vertices than T ,
so it admits a facial graceful coloring c with colors 1, 2, . . . , 6. Let i be a color from
the set {1, 2, 3} \ {|c(v) − c(x)|, |c(v) − c(y)|}. Let k ∈ {1, 2, . . . , 6} be a color which
satisfies |c(v) − k| = i. The facial graceful coloring c of G − u can be extended to
a facial graceful coloring of G by coloring u with color k, a contradiction.

Now assume that G has no vertices of degree 1. By Theorem 3.1, G is not a cycle.
Consequently, G contains a cycle C = v1v2 . . . vnv1 which is incident with exactly one
cut-vertex, say u, in G. Without loss of generality, assume that u = v1. Let r be the
edge facially adjacent to v1v2 different from v1vn, v2v3 and let s be the edge facially
adjacent to v1vn different from v1v2, vn−1vn, see Figure 3 for illustration.
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r s

C

Fig. 3. A configuration in G

Let H be the graph obtained from G by removing the vertices and edges incident
with C except for v1. The graph H has fewer vertices than G so it has a facial graceful
coloring c with colors 1, 2, . . . , 6. In the following we extend this coloring to a facial
graceful coloring of G. We distinguish two cases according to the degree of v1 in G.

First assume that v1 has degree at least four in G. In this case the edges r, s have
different colors, since they are facially adjacent in H. By Lemma 3.3, the cycle C
has a facial graceful coloring c′ : V (Cn) → {1, 2, 3, 4, 5, 6} such that c′(v1) = c(v1). If
neither v1v2 and r nor v1vn and s have the same color, then the colorings c of H and
c′ of Cn define a facial graceful coloring of G. Otherwise, we recolor the cycle C in
the following way: c′′(v1) = c′(v1), c′′(vi) = c′(vn+2−i) for i ≥ 2. Now, neither v1v2
and r nor v1vn and s have the same color. Therefore, c and c′′ give a facial graceful
coloring of G.

Finally, assume that v1 has degree 3 in G. Let e be the edge incident with v1 in H.
First we modify the facial graceful coloring of H. At least one of the colors 1, 2, 3 does
not appear on the edges facially adjacent to e in H. We choose one such color and
recolor e with the chosen color, and then we recolor v1 in order to obtain a facial
graceful coloring of H. Clearly, this is always possible. Now, it is sufficient to show
that this new coloring of H can be extended to a facial graceful coloring of G. We color
the vertices v1, v2, . . . , vn (in this order) in the following way. Assume that n = 3k + i,
where i ∈ {0, 1, 2}. In each of the following cases, first we use the pattern P3+i and
then (k − 1)-times the pattern P3.
Case 1. The color of e is 1.
Case 1.1. If the color of v1 is 1, then P3 = 1, 4, 3, P4 = 1, 4, 2, 3, and P5 = 1, 4, 5, 2, 3.
Case 1.2. If the color of v1 is 2, then P3 = 2, 5, 4, P4 = 2, 5, 3, 4, and P5 = 2, 5, 6, 3, 4.
Case 1.3. If the color of v1 is 3, then P3 = 3, 6, 5, P4 = 3, 6, 1, 5, and P5 = 3, 6, 1, 2, 5.
Case 1.4. If the color of v1 is 4, then P3 = 4, 1, 2, P4 = 4, 1, 3, 2, and P5 = 4, 1, 3, 6, 2.
Case 1.5. If the color of v1 is 5, then P3 = 5, 2, 3, P4 = 5, 2, 4, 3, and P5 = 5, 2, 1, 4, 3.
Case 1.6. If the color of v1 is 6, then P3 = 6, 3, 4, P4 = 6, 3, 1, 4, and P5 = 6, 3, 1, 5, 4.
Case 2. The color of e is 2.
Case 2.1. If the color of v1 is 1, then P3 = 1, 4, 2, P4 = 1, 4, 6, 2, and P5 = 1, 4, 3, 6, 2.
Case 2.2. If the color of v1 is 2, then P3 = 2, 5, 3, P4 = 2, 5, 1, 3, and P5 = 2, 5, 6, 1, 3.
Case 2.3. If the color of v1 is 3, then P3 = 3, 6, 4, P4 = 3, 6, 1, 4, and P5 = 3, 6, 1, 2, 4.
Case 2.4. If the color of v1 is 4, then P3 = 4, 1, 3, P4 = 4, 1, 6, 3, and P5 = 4, 1, 2, 6, 3.
Case 2.5. If the color of v1 is 5, then P3 = 5, 2, 4, P4 = 5, 2, 6, 4, and P5 = 5, 2, 1, 6, 4.
Case 2.6. If the color of v1 is 6, then P3 = 6, 3, 5, P4 = 6, 3, 2, 5, and P5 = 6, 3, 4, 2, 5.
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Case 3. The color of e is 3.
Case 3.1. If the color of v1 is 1, then P3 = 1, 5, 2, P4 = 1, 5, 4, 2, and P5 = 1, 5, 4, 6, 2.
Case 3.2. If the color of v1 is 2, then P3 = 2, 4, 1, P4 = 2, 4, 3, 1, and P5 = 2, 4, 3, 6, 1.
Case 3.3. If the color of v1 is 3, then P3 = 3, 4, 1, P4 = 3, 4, 2, 1, and P5 = 3, 4, 2, 5, 1.
Case 3.4. If the color of v1 is 4, then P3 = 4, 2, 5, P4 = 4, 2, 3, 5, and P5 = 4, 2, 3, 1, 5.
Case 3.5. If the color of v1 is 5, then P3 = 5, 3, 6, P4 = 5, 3, 4, 6, and P5 = 5, 3, 4, 1, 6.
Case 3.6. If the color of v1 is 6, then P3 = 6, 2, 5, P4 = 6, 2, 3, 5, and P5 = 6, 2, 3, 1, 5.

In each of these cases we obtain a facial graceful coloring of G.
Now we show that there are infinitely many cacti with no facial graceful 5-coloring.

Let G be a cactus which contains a cycle C5 = v1v2v3v4v5v1 on five vertices, and
let all of these vertices have degree 3 in G. Suppose that G admits a facial graceful
5-coloring. Any two vertices of C5 are on a facial walk of length at most 2, therefore no
two of them have the same color. Consequently, all five colors 1, 2, 3, 4, 5 appear on the
vertices of C5. Let vi be the vertex of color 3. Then all the edges incident with vi have
color either 1 or 2 (3 − 1 = 5 − 3 = 2 and 3 − 2 = 4 − 3 = 1). The vertex vi has degree 3
and hence at least two of the incident edges have the same color, a contradiction.

4. FACIAL GRACEFUL COLORING OF TREES

Lemma 4.1. Every tree admits a 2-facial coloring with at most 4 colors.

Proof. Suppose there is a counterexample to Lemma 4.1. Let T be a counterexample
with the minimum number of vertices. Clearly, T has at least five vertices. Let u be
a leaf of T and let v be its neighbor. Let vx and vy be the edges facially adjacent to
vu (x = y if the vertex v has degree two). The tree T − u has fewer vertices than T ,
so it admits a 2-facial coloring c with at most 4 colors. If we color the vertex u with
a color distinct from c(v), c(x), c(y), then we obtain a 2-facial coloring of T using at
most 4 colors, a contradiction.

Theorem 4.2. If T is a tree, then χfg(T ) ≤ 5. Moreover, the bound is tight.

Proof. By Lemma 4.1, T admits a 2-facial coloring with at most 4 colors. If we use
the colors 1, 2, 4, 5 in a 2-facial coloring of T , then, by Lemma 2.2, we obtain a facial
graceful coloring of T .

Now we show that the bound is tight. Consider a tree T such that it contains
a vertex v of degree 3. Let v1, v2, v3 be its neighbors. If v1, v2, v3 have degree 3, then
χfg(T ) = 5. Suppose that T admits a facial graceful 4-coloring. Observe that one of
the vertices v, v1, v2, v3 receives color 3. Then the incident edges have color 1 or 2.
Consequently, at least two of them have the same color, a contradiction.

4.1. FACIAL GRACEFUL 3-COLORING

Theorem 3.1 implies that if χfg(G) = 3 and G is connected, then G is a tree. In the
following we characterize all trees which admit a facial graceful 3-coloring.
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Any tree in this paper is embedded in the plane. The particular embedding is very
important. The tree depicted in Figure 4 with the embedding on the left has a facial
graceful 3-coloring, and with the embedding on the right, its facial graceful chromatic
number is at least 4 (see Theorem 4.5).

2

2

2 1 3 1 2

Fig. 4. Two different embeddings of the same tree

Lemma 4.3. Let T be a tree on at least three vertices. Then T admits a facial edge
coloring with two colors if and only if T has no vertex of degree 2k + 1 for k ≥ 1.

Proof. First assume that every inner vertex (i.e. vertices of degree at least two) has
an even degree. If T is a star, then we color the edges incident with the central vertex
with colors a and b alternately. If T is not a star, then pick any vertex of T to be the
root. We color the edges of T starting from the root to the leaves. In each step it is
sufficient to find a suitable edge coloring of a star with one precolored edge.

Now assume that T has a vertex v of degree 2k + 1 for some k ≥ 1. In this case
the star with central vertex v has no facial edge coloring with two colors, so the same
holds for T .

Lemma 4.4. Let T be a tree which admits a facial graceful 3-coloring c. Then

(i) every vertex of degree at least two receives color either 1 or 3 under c, and
(ii) only the leaves have odd degree in T .

Proof. If a vertex v receives color 2 in a facial graceful 3-coloring of T , then it is a leaf,
since every edge incident with v has color 1 (3 − 2 = 2 − 1 = 1).

The vertex coloring c of T uses the colors 1, 2, 3, therefore, the induced facial edge
coloring uses only the colors 1, 2. Consequently, the degree of every inner vertex of T
must be even, see Lemma 4.3.

Theorem 4.5. Let T be a tree on at least three vertices and let T − be the tree obtained
from T by removing all leaves. Then χfg(T ) = 3 if and only if

(i) T admits a facial edge coloring c with two colors, and
(ii) T − is monochromatic under c.

Proof. First assume that χfg(T ) = 3. By Lemma 4.4, only the leaves have odd degree
in T . Lemma 4.3 implies that T admits a facial edge coloring with two colors. Observe
that this facial edge 2-coloring is unique up to permutation of the colors. This facial
edge 2-coloring of T is also given by a facial graceful 3-coloring of T . By Lemma 4.4, the
vertices of T − are colored with 1 and 3, therefore all of its edges have the same color.
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Now assume that (i) and (ii) hold. Let c be a facial edge coloring of T with colors x
and y. Assume that the edges of T − have color x. We define a facial graceful 3-coloring
of T in the following way. First we color the vertices of degree at least two, thereafter
the leaves. T − is a tree so it has a proper vertex coloring with two colors. We use
colors 1 and 3. This proper vertex coloring of T − induces a partial vertex coloring
of T . It remains to color the leaves of T . Let v be a vertex of T of degree k ≥ 2 and
let e1, e2, . . . , ek be the edges incident with v, listed in their clockwise order around v.
By Lemma 4.3, the degree of v in T is even. Without loss of generality, assume that
the edges e1, e3, . . . , ek−1 have color x and the edges e2, e4, . . . , ek have color y. Let vi

be the second endvertex of ei. The vertices v2, v4, . . . , vk are leaves, since the edges
e2, e4, . . . , ek have color y. We color these leaves with color 2. If the color of v is 1 (3),
then we color the vertices v1, v3, . . . , vk−1 with color 3 (1). Note that if a vertex vi,
i ∈ {1, 3, . . . , vk−1}, belongs to T − then it is already colored with 3 (1).

4.2. FACIAL GRACEFUL 4-COLORING OF TREES

Lemma 4.6. If T is a tree with no vertex of degree 2k +1, k ≥ 1, then it has a 2-facial
coloring with at most 3 colors.

Proof. If T is a star, then we color the central vertex with color a and the adjacent
vertices alternately with b and c. If T is not a star, then pick any vertex of T to be
the root. We color the vertices of T starting from the root to the leaves. In each step
it is sufficient to find a suitable coloring of a star.

Theorem 4.7. If T is a tree with no vertex of degree 2k + 1, k ≥ 1, then χfg(T ) ≤ 4.
Moreover, the bound is tight.

Proof. By Lemma 4.6, T admits a 2-facial coloring with at most 3 colors. If we use the
colors 1, 2, 4 in a 2-facial coloring of T , then we obtain a facial graceful coloring.

Observe that by Theorem 4.5 and Theorem 4.7 we can determine the exact value
of χfg(T ) for any tree T with no vertex of degree 2k + 1, k ≥ 1. By Theorem 4.7, if T
is a tree with χfg(T ) = 5, then T necessarily contains a vertex of degree 2k + 1 for
some k ≥ 1. In the following we prove that there are trees which contain only vertices
of odd degree, and they admit a facial graceful 4-coloring.

Lemma 4.8. Let T be a tree and let T − be the tree obtained from T by removing all
leaves. If no two edges of T − are facially adjacent in T , then χfg(T ) ≤ 4.

Proof. First we find a proper vertex coloring of T − with colors 1 and 4. This coloring
gives a partial vertex coloring of T . After that we color the leaves with colors 2 and 3
in order to obtain a facial graceful coloring of T .

We finish the paper with the following challenging problem.

Problem 4.9. Characterize all trees with facial graceful chromatic number
equal to four.
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