PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical and physical modifications of electrospun fibers as a method to stimulate tissue regeneration – minireview

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fibrous scaffolds based on (bio)polymers are observed as mimicking the microstructure of the extracellular matrix. Thus, they are considered as an example of a utilitarian scaffold, useful for the regeneration of various types of tissues. The techniques described in the literature are well known to obtain submicrometric and nanometric fibers that, when randomly arranged, mimic the ECM. The biomimetic scaffold criterion might be even better reflected if the cell adhesion sites are present on the surface of such fibers. They promote the formation of the focal adhesion contact or facilitate the formation of a protein film on the fiber surface. Such a process is enhanced by an appropriate physical or chemical modification that activates the protein adsorption and the subsequent cell adhesion. The aim of this paper is to present different methods of physical and/or chemical modifications of fibrous materials: which can serve as scaffolds to support the regeneration processes of various tissues. In terms of physical methods, only weak interactions between the surface and the modifier were observed. This technique is simple but not durable. Chemisorption used as a second method of fiber modification is possible if a covalent or ionic bond is formed between the fiber and the modifier. Therefore, the chemical adsorption may not be fully reversible and requires a sequence of chemical actions to form a chemical bond. The most commonly used methods are the combined methods where the first step is the physical activation of the fiber surface, which facilitates the chemical modification step.
Rocznik
Strony
31--41
Opis fizyczny
Bibliogr. 84 poz., rys., zdj.
Twórcy
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Krakow, Poland
  • AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Al. Mickiewicza 30, 30-059 Krakow, Poland
Bibliografia
  • [1] M. Asadian, I. Onyshchenko, M. Thukkaram, P.S. Esbah Tabaei, J. Van Guyse, P. Cools, H. Declercq, R. Hoogenboom, R. Morent, N. De Geyter: Effects of a dielectric barrier discharge (DBD) treat¬ment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydr. Polym. 201 (2018) 402–415.
  • [2] Y. Ding, M. Floren, W. Tan: High-Throughput Screening of Vas¬cular Endothelium-Destructive or Protective Microenvironments: Cooperative Actions of Extracellular Matrix Composition, Stiffness, and Structure, Adv. Healthc. Mater. 6 (2017).
  • [3] Q. Li, B. Zhang, N. Kasoju, J. Ma, A. Yang, Z. Cui, H. Wang, H. Ye: Differential and interactive effects of substrate topography and chemistry on human mesenchymal stem cell gene expression. Int. J. Mol. Sci. 19 (2018).
  • [4] Z. Guo, M. Ma, X. Huang, H. Li, C. Zhou: Effect of fiber diameter on proliferation and differentiation of MC3T3-E1 pre-osteoblasts. J. Biomater. Tissue Eng. 7 (2017) 162–169.
  • [5] L. Krishna, S. Nilawar, M. Ponnalagu, M. Subramani, C. Jayadev, R. Shetty, K. Chatterjee, D. Das: Fiber Diameter Differentially Regulates Function of Retinal Pigment and Corneal Epithelial Cells on Nano¬fibrous Tissue Scaffolds, ACS Appl. Bio Mater. 3 (2020) 823–837.
  • [6] F. Rezaei, T. Planckaert, C. Vercruysse, J. Verjans, P. Van Der Voort, H. Declercq, R. Hoogenboom, R. Morent, N. De Geyter: The Influence of Pre-Electrospinning Plasma Treatment on Physi¬cochemical Characteristics of PLA Nanofibers, Macromol. Mater. Eng. 304 (2019) 1–16.
  • [7] R. Ghobeira, C. Philips, V. De Naeyer, H. Declercq, P. Cools, N. De Geyter, R. Cornelissen, R. Morent: Comparative study of the surface properties and cytocompatibility of plasma-treated poly-ϵ- caprolactone nanofibers subjected to different sterilization methods, J. Biomed. Nanotechnol. 13 (2017) 699–716.
  • [8] Z. Sarwar, E. Krugly, P.P. Danilovas, D. Ciuzas, V. Kauneliene, D. Martuzevicius: Fabrication and characterization of PEBA fibers by melt and solution electrospinning. J. Mater. Res. Technol. 8 (2019) 6074–6085.
  • [9] Y. Kara, K. Molnár: Revealing of process–structure–property relationships of fine polypropylene fiber mats generated via melt blowing. Polym. Adv. Technol. (2021) 1–17.
  • [10] T.L. Jenkins, S. Meehan, B. Pourdeyhimi, D. Little: Meltblown Polymer Fabrics as Candidate Scaffolds for Rotator Cuff Tendon Tissue Engineering, Tissue Eng. - Part A 23 (2017) 958–967.
  • [11] M. Castilho, D. Feyen, M. Flandes-Iparraguirre, G. Hochleitner, J. Groll, P.A.F. Doevendans, T. Vermonden, K. Ito, J.P.G. Sluijter, J. Malda: Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering. Adv. Healthc. Mater. 6 (2017) 1–9.
  • [12] M. Gwiazda, S. Kumar, W. Świeszkowski, S. Ivanovski, C. Vaquette: The effect of melt electrospun writing fiber orientation onto cellular organization and mechanical properties for application in Anterior Cruciate Ligament tissue engineering. J. Mech. Behav. Biomed. Mater. 104 (2020).
  • [13] F.L. He, X. Deng, Y.Q. Zhou, T. Di Zhang, Y.L. Liu, Y.J. Ye, D.C. Yin: Controlled release of antibiotics from poly-ε-caprolactone/ polyethylene glycol wound dressing fabricated by direct-writing melt electrospinning. Polym. Adv. Technol. 30 (2019) 425–434.
  • [14] M. Rafiei, E. Jooybar, M.J. Abdekhodaie, M. Alvi: Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery. Mater. Sci. Eng. C 113 (2020).
  • [15] M.M. Machado-Paula, M.A.F. Corat, M. Lancellotti, G. Mi, F.R. Marciano, M.L. Vega, A.A. Hidalgo, T.J. Webster, A.O. Lobo: A comparison between electrospinning and rotary-jet spinning to produce PCL fibers with low bacteria colonization. Mater. Sci. Eng. C 111 (2020).
  • [16] H. Luo, D. Gan, M. Gama, J. Tu, F. Yao, Q. Zhang, H. Ao, Z. Yang, J. Li, Y. Wan: Interpenetrated nano- and submicro-fibrous biomimetic scaffolds towards enhanced mechanical and biological performances. Mater. Sci. Eng. C 108 (2020) 110416.
  • [17] X. Wang, B. Ding, B. Li: Biomimetic electrospun nanofibrous structures for tissue engineering. Mater. Today 16 (2013).
  • [18] Y. Xu, G. Shi, J. Tang, R. Cheng, X. Shen, Y. Gu, L. Wu, K. Xi, Y. Zhao, W. Cui, L. Chen: ECM-inspired micro/nanofibers for modu¬lating cell function and tissue generation. Sci. Adv. 6 (2020) 1–18.
  • [19] J. Ye, J. Si, Z. Cui, Q. Wang, K. Peng, W. Chen, X. Peng, S.C. Chen: Surface Modification of Electrospun TPU Nanofiber Scaffold with CNF Particles by Ultrasound-Assisted Technique for Tissue Engineering. Macromol. Mater. Eng. 302 (2017) 1–9.
  • [20] I. Carmagnola, E. Ranzato, V. Chiono: Scaffold functionaliza¬tion to support a tissue biocompatibility, in: Funct. 3D Tissue Eng. Scaffolds Mater. Technol. Appl., Elsevier (2018) 255–277.
  • [21] F.J. O’Brien: Biomaterials & scaffolds for tissue engineering. Mater. Today 14 (2011) 88–95.
  • [22] X. Ren, Y. Feng, J. Guo, H. Wang, Q. Li, J. Yang, X. Hao, J. Lv, N. Ma, W. Li: Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications. Chem. Soc. Rev. 44 (2015) 5680–5742.
  • [23] N.R. Mohamad, N.H.C. Marzuki, N.A. Buang, F. Huyop, R.A. Wahab: An overview of technologies for immobilization of en¬zymes and surface analysis techniques for immobilized enzymes, Biotechnol. Biotechnol. Equip. 29 (2015) 205–220.
  • [24] J. Zhou, X. Guo, Q. Zheng, Y. Wu, F. Cui, B. Wu: Improving osteogenesis of three-dimensional porous scaffold based on mi¬neralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide. Colloids Surfaces B Biointerfaces 152 (2017) 124–132.
  • [25] D. Rana, K. Ramasamy, M. Leena, C. Jiménez, J. Campos, P. Ibarra, Z.S. Haidar, M. Ramalingam: Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine. Biotechnol. Prog. 32 (2016) 554–567.
  • [26] W.S. Chen, L.Y. Guo, C.C. Tang, C. Kang Tsai, H.H. Huang, T.Y. Chin, M.-L. Yang, Y.W. Chen-Yang: The Effect of Laminin Surface Modification of Electrospun Silica Nanofiber Substrate on Neuronal Tissue Engineering (2018).
  • [27] I. Jesswein, S. Uebele, A. Dieterich, S. Keller, T. Hirth, T. Schiestel: Influence of surface properties on the dip coating behavior of hollow fiber membranes, J. Appl. Polym. Sci. 135 (2018) 1–10.
  • [28] X. Wu, I. Wyman, G. Zhang, J. Lin, Z. Liu, Y. Wang, H. Hu: Pre¬paration of superamphiphobic polymer-based coatings via spray-and dip-coating strategies, Prog. Org. Coatings 90 (2016) 463–471.
  • [29] J. Fu, X.B. Li, L.X. Wang, X.H. Lv, Z. Lu, F. Wang, Q. Xia, L. Yu, C.M. Li: One-Step Dip-Coating-Fabricated Core-Shell Silk Fibroin Rice Paper Fibrous Scaffolds for 3D Tumor Spheroid Formation, ACS Appl. Bio Mater. 3 (2020) 7462–7471.
  • [30] D. Moreau, A. Villain, M. Bachy, H. Proudhon, D.N. Ku, D. Hannouche, H. Petite, L. Corté: In vivo evaluation of the bone integration of coated poly(vinyl-alcohol) hydrogel fiber implants. J. Mater. Sci. Mater. Med. 28 (2017).
  • [31] M. Atiq Ur Rehman, Q. Chen, A. Braem, M.S.P. Shaffer, A.R. Boccaccini: Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges, Int. Mater. Rev. 0 (2020) 1–30.
  • [32] S. Thinakaran, A.M. Loordhuswamy, G.D. Venkateshwapuram Rengaswami: Electrophoretic deposition of chitosan/nano silver embedded micro sphere on centrifugal spun fibrous matrices – A facile biofilm resistant biocompatible material, Int. J. Biol. Mac¬romol. 148 (2020) 68–78.
  • [33] M. Taale, D. Krüger, E. Ossei-Wusu, F. Schütt, M.A.U. Rehman, Y.K. Mishra, J. Marx, N. Stock, B. Fiedler, A.R. Boccaccini, R. Willumeit-Römer, R. Adelung, C. Selhuber-Unkel: Systematically Designed Periodic Electrophoretic Deposition for Decorating 3D Carbon-Based Scaffolds with Bioactive Nanoparticles, ACS Bio¬mater. Sci. Eng. 5 (2019) 4393–4404.
  • [34] Q. Yao, J. Jing, Q. Zeng, T.L. Lu, Y. Liu, X. Zheng, Q. Chen: Bilayered BMP2 Eluting Coatings on Graphene Foam by Electrop¬horetic Deposition: Electroresponsive BMP2 Release and Enhan¬cement of Osteogenic Differentiation, ACS Appl. Mater. Interfaces 9 (2017) 39962–39970.
  • [35] E. Stodolak-Zych, M. Gajek, A. Rapacz-Kmita, Ł. Zych, B. Kolesińska: Monitoring of the hydrolytic and enzymatic degrada¬tion process of fibrous polysaccharides-protein scaffolds, in: 13th Conf. Calorim. Therm. Anal. Polish Soc. Calorim. Therm. Anal., Zakopane, Poland (2018).
  • [36] S. Faraji, B. Sadri, B. Vajdi Hokmabad, N. Jadidoleslam, E. Esmaeilzadeh: Experimental study on the role of electrical con¬ductivity in pulsating modes of electrospraying, Exp. Therm. Fluid Sci. 81 (2017) 327–335.
  • [37] R.M.D. Soares, N.M. Siqueira, M.P. Prabhakaram, S. Ramakrishna: Electrospinning and electrospray of bio-based and natural polymers for biomaterials development. Mater. Sci. Eng. C 92 (2018) 969–982.
  • [38] A. Alehosseini, B. Ghorani, M. Sarabi-Jamab, N. Tucker: Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Crit. Rev. Food Sci. Nutr. 58 (2018) 2346–2363.
  • [39] J. Tang, C. Wu, S. Chen, Z. Qiao, P. Borovskikh, A. Shchegolkov, L. Chen, D. Wei, J. Sun, H. Fan: Combining Electrospinning and Electrospraying to Prepare a Biomimetic Neural Scaffold with Sy¬nergistic Cues of Topography and Electrotransduction, ACS Appl. Bio Mater. 3 (2020) 5148–5159.
  • [40] Y. He, Y. Jin, X. Wang, S. Yao, Y. Li, Q. Wu, G. Ma, F. Cui, H. Liu: An antimicrobial peptide-loaded gelatin/chitosan nanofibrous membrane fabricated by sequential layer-by-layer electrospinning and electrospraying techniques. Nanomaterials 8 (2018) 1–13.
  • [41] V.M. Giménez, N. Sperandeo, S. Faudone, S. Noriega, W. Manucha, D. Kassuha: Preparation and characterization of bosentan monohydrate/ε-polycaprolactone nanoparticles obtained by electrospraying. Biotechnol. Prog. 35 (2019) 1–11.
  • [42] M.B. Taskin, R. Xu, H. Gregersen, J.V. Nygaard, F. Besen¬bacher, M. Chen: Three-Dimensional Polydopamine Functional¬ized Coiled Microfibrous Scaffolds Enhance Human Mesenchymal Stem Cells Colonization and Mild Myofibroblastic Differentiation. ACS Appl. Mater. Interfaces 8 (2016) 15864–15873.
  • [43] S. Bhowmick, S. Rother, H. Zimmermann, P.S. Lee, S. Moeller, M. Schnabelrauch, V. Koul, R. Jordan, V. Hintze, D. Scharnweber: Biomimetic electrospun scaffolds from main extracellular matrix components for skin tissue engineering application – The role of chondroitin sulfate and sulfated hyaluronan, Mater. Sci. Eng. C 79 (2017) 15–22.
  • [44] Q. Zhu, X. Li, Z. Fan, Y. Xu, H. Niu, C. Li, Y. Dang, Z. Huang, Y. Wang, J. Guan: Biomimetic polyurethane/TiO2 nanocomposite scaffolds capable of promoting biomineralization and mesenchymal stem cell proliferation (2018).
  • [45] M. Eskitoros-Togay, Y.E. Bulbul, N. Dilsiz: Controlled release of doxycycline within core/shell poly(ε-caprolactone)/poly(ethylene oxide) fibers via coaxial electrospinning. J. Appl. Polym. Sci. 137 (2020) 1–12.
  • [46] J. Lipton, G.M. Weng, J.A. Rӧhr, H. Wang, A.D. Taylor: Layer-by-Layer Assembly of Two-Dimensional Materials: Meticulous Control on the Nanoscale. Matter 2 (2020) 1148–1165.
  • [47] P. Gentile, I. Carmagnola, T. Nardo, V. Chiono: Layer-by-layer assembly for biomedical applications in the last decade. Nanotech¬nology 26 (2015) 422001.
  • [48] Y. Qian, L. Li, Y. Song, L. Dong, P. Chen, X. Li, K. Cai, O. Germershaus, L. Yang, Y. Fan: Surface modification of nanofi¬brous matrices via layer-by-layer functionalized silk assembly for mitigating the foreign body reaction. Biomaterials 164 (2018) 22–37.
  • [49] S.E. Gleeson, S. Kim, T. Yu, M. Marcolongo, C.Y. Li: Size-dependent soft epitaxial crystallization in the formation of blend nanofiber shish kebabs, Polymer (Guildf). 202 (2020) 122644.
  • [50] L. Yi, S. Luo, J. Shen, S. Guo, H.J. Sue: Bioinspired Polylactide Based on the Multilayer Assembly of Shish-Kebab Structure: A Strategy for Achieving Balanced Performances. ACS Sustain. Chem. Eng. 5 (2017) 3063–3073.
  • [51] X. Guo, X. Wang, X. Li, Y.C. Jiang, S. Han, L. Ma, H. Guo, Z. Wang, Q. Li: Endothelial Cell Migration on Poly(ϵ-caprolactone) Nanofibers Coated with a Nanohybrid Shish-Kebab Structure Mim¬icking Collagen Fibrils. Biomacromolecules 21 (2020) 1202–1213.
  • [52] W. Bingbing, L. Bing, X. Jie, C.Y. Li: Hierarchically ordered polymer nanofibers via electrospinning and controlled polymer crystallization. Macromolecules 41 (2008) 9516–9521.
  • [53] L. Liu, T. Zhang, C. Li, G. Jiang, F. Wang, L. Wang: Regulat¬ing surface roughness of electrospun poly(ε-caprolactone)/β- tricalcium phosphate fibers for enhancing bone tissue regeneration. Eur. Polym. J. 143 (2021) 110201.
  • [54] C. Huang, G. Yang, S. Zhou, E. Luo, J. Pan, C. Bao, X. Liu: Controlled Delivery of Growth Factor by Hierarchical Nanostructured Core-Shell Nanofibers for the Efficient Repair of Critical-Sized Rat Calvarial Defect. ACS Biomater. Sci. Eng. 6 (2020) 5758–5770.
  • [55] E. Dzierzkowska, S. Krupnik, R. Kurpanik, E. Stodolak-Zych: Polymeric shish-kebab fibers mimicking corneal stroma membrane, in: UK-PL Bioinspired Mater. Conf. 23-24th Novemb. 2020, 88.
  • [56] D. de Cassan, A. Becker, B. Glasmacher, Y. Roger, A. Hoffmann, T.R. Gengenbach, C.D. Easton, R. Hänsch, H. Menzel: Blending chitosan-g-poly(caprolactone) with poly(caprolactone) by electrospinning to produce functional fiber mats for tissue engineering applications, J. Appl. Polym. Sci. 137 (2020) 1–11. [
  • 57] S. Kwon, M. Fan, H.F.M. DaCosta, A.G. Russell, K.A. Berchtold, M.K. Dubey: CO2 Sorption, in: Coal Gasif. Its Appl., Elsevier (2011) 293–339.
  • [58] M. Najafi, M.W. Frey: Electrospun nanofibers for chemical separation. Nanomaterials 10 (2020).
  • [59] L. Ahrens, D. Vonwil, N. Arya, A. Forget, V.P. Shastri: Biotin-avidin-mediated capture of microspheres on polymer fibers. Molecules 24 (2019) 1–15.
  • [60] N. Udomluck, H. Lee, S. Hong, S.H. Lee, H. Park: Surface functionalization of dual growth factor on hydroxyapatite-coated nanofi¬bers for bone tissue engineering. Appl. Surf. Sci. 520 (2020) 146311.
  • [61] R. Daum, D. Visser, C. Wild, L. Kutuzova, M. Schneider, G. Lorenz, M. Weiss, S. Hinderer, U.A. Stock, M. Seifert, K. Schenke-Layland: Fibronectin Adsorption on Electrospun Synthetic Vascular Grafts Attracts Endothelial Progenitor Cells and Promotes Endothelialization in Dynamic In Vitro Culture. Cells 9 (2020) 778.
  • [62] A. Ravindran Girija, V. Palaninathan, X. Strudwick, S. Balasubramanian, S. Dasappan Nair, A.J. Cowin: Collagen-functionalized electrospun smooth and porous polymeric scaffolds for the develop¬ment of human skin-equivalent. RSC Adv. 10 (2020) 26594–26603.
  • [63] G. Li, K. Chen, D. You, M. Xia, W. Li, S. Fan, R. Chai, Y. Zhang, H. Li, S. Sun: Laminin-Coated Electrospun Regenerated Silk Fibroin Mats Promote Neural Progenitor Cell Proliferation, Differentiation, and Survival in vitro. Front. Bioeng. Biotechnol. 7 (2019) 190.
  • [64] G. Peng, D. Yao, Y. Niu, H. Liu, Y. Fan: Surface Modification of Multiple Bioactive Peptides to Improve Endothelialization of Vascular Grafts. Macromol. Biosci. 19 (2019) 1–12.
  • [65] H.P. Felgueiras, M.T.P. Amorim: Functionalization of electrospun polymeric wound dressings with antimicrobial peptides. Colloids Surfaces B Biointerfaces 156 (2017) 133–148.
  • [66] E. Yüksel, A. Karakeçili, T.T. Demirtaş, M. Gümüşderelioğlu: Preparation of bioactive and antimicrobial PLGA membranes by magainin II/EGF functionalization. Int. J. Biol. Macromol. 86 (2016) 162–168.
  • [67] T. Xu, R. Yang, X. Ma, W. Chen, S. Liu, X. Liu, X. Cai, H. Xu, B. Chi: Bionic Poly(γ-Glutamic Acid) Electrospun Fibrous Scaffolds for Preventing Hypertrophic Scars. Adv. Healthc. Mater. 8 (2019) 1–12.
  • [68] B. Niemczyk-Soczynska, A. Gradys, P. Sajkiewicz: Hydrophilic surface functionalization of electrospun nanofibrous scaffolds in tissue engineering. Polymers (Basel). 12 (2020) 1–20.
  • [69] S. Asadpour, H. Yeganeh, J. Ai, H. Ghanbari: A novel polyurethane modified with biomacromolecules for small-diameter vascular graft applications. J. Mater. Sci. 53 (2018) 9913–9927.
  • [70] V. Hoseinpour, A. Ghaee, V. Vatanpour, N. Ghaemi: Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydr. Polym. 188 (2018) 37–47.
  • [71] T. Haddad, S. Noel, B. Liberelle, R. El Ayoubi, A. Ajji, G. De Crescenzo: Fabrication and surface modification of poly lactic acid (PLA) scaffolds with epidermal growth factor for neural tissue engineering. Biomatter 6 (2016) e1231276.
  • [72] J.H. Brown, P. Das, M.D. DiVito, D. Ivancic, L.P. Tan, J.A. Wertheim: Nanofibrous PLGA electrospun scaffolds modified with type I collagen influence hepatocyte function and support viability in vitro. Acta Biomater. 73 (2018) 217–227.
  • [73] S.P. Pilipchuk, A. Monje, Y. Jiao, J. Hao, L. Kruger, C.L. Fla¬nagan, S.J. Hollister, W. V. Giannobile: Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo, Adv. Healthc. Mater. 5 (2016) 676–687.
  • [74] M. Asadian, S. Grande, I. Onyshchenko, R. Morent, H. Declercq, N. De Geyter: A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions, Appl. Surf. Sci. 481 (2019) 1554–1565.
  • [75] S. Surucu, K. Masur, H. Turkoglu Sasmazel, T. Von Woedtke, K.D. Weltmann: Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation. Appl. Surf. Sci. 385 (2016) 400–409.
  • [76] N. Ojah, D. Saikia, D. Gogoi, P. Baishya, G.A. Ahmed, A. Ramteke, A.J. Choudhury: Surface modification of core-shell silk/PVA nanofibers by oxygen dielectric barrier discharge plasma: Studies of physico-chemical properties and drug release behavior. Appl. Surf. Sci. 475 (2019) 219–229.
  • [77] N. Ojah, R. Borah, G.A. Ahmed, M. Mandal, A.J. Choudhury: Surface modification of electrospun silk/AMOX/PVA nanofibers by dielectric barrier discharge plasma: physiochemical properties, drug delivery and in-vitro biocompatibility. Prog. Biomater. 9 (2020) 219–237.
  • [78] B. Akhavan, T.D. Michl, C. Giles, K. Ho, L. Martin, O. Sharifahmadian, S.G. Wise, B.R. Coad, N. Kumar, H.J. Griesser, M.M. Bilek: Plasma activated coatings with dual action against fungi and bacteria. Appl. Mater. Today 12 (2018) 72–84.
  • [79] Z. Wang, H.C. Yang, F. He, S. Peng, Y. Li, L. Shao, S.B. Darling: Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter 1 (2019) 115–155.
  • [80] I. Carmagnola, V. Chiono, G. Ruocco, A. Scalzone, P. Gentile, P. Taddei, G. Ciardelli: PLGA membranes functionalized with gelatin through biomimetic mussel-inspired strategy. Nanomaterials 10 (2020) 1–17.
  • [81] X. Chen, X. Wang, S. Wang, X. Zhang, J. Yu, C. Wang: Mussel¬-inspired polydopamine-assisted bromelain immobilization onto electrospun fibrous membrane for potential application as wound dressing. Mater. Sci. Eng. C 110 (2020) 110624.
  • [82] Y. Liu, G. Zhou, Z. Liu, M. Guo, X. Jiang, M.B. Taskin, Z. Zhang, J. Liu, J. Tang, R. Bai, F. Besenbacher, M. Chen, C. Chen: Mussel Inspired Polynorepinephrine Functionalized Electrospun Polycaprolactone Microfibers for Muscle Regeneration. Sci. Rep. 7 (2017) 1–10.
  • [83] C.F. Rediguieri, R.C. Sassonia, K. Dua, I.S. Kikuchi, T. de Jesus Andreoli Pinto: Impact of sterilization methods on electrospun scaffolds for tissue engineering. Eur. Polym. J. 82 (2016) 181–195.
  • [84] O. Evrova, D. Kellenberger, C. Scalera, M. Calcagni, P. Giovanoli, V. Vogel, J. Buschmann: Impact of UV sterilization and short term storage on the in vitro release kinetics and bioactivity of biomolecules from electrospun scaffolds. Sci. Reports 2019 91, 9 (2019) 1–11.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8e40ec0-a398-46f8-94bc-36d5492cf69d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.