PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of gas chromatography for determining pharmaceutical residues in clinical, cosmetic, food and environmental samples in the light of the requirements of sustainable development

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zastosowanie chromatografii gazowej do oznaczania pozostałości farmaceutyków w próbkach klinicznych, kosmetycznych, żywieniowych i środowiskowych w świetle wymagań zrównoważonego rozwoju
Języki publikacji
EN
Abstrakty
EN
The sustainable development of human activities is directly related to the protection of the environment by lowering the anthropogenic stress. Pharmaceuticals – due to their growing consumption (use in medicine, veterinary, animal production, cosmetics) and their incomplete removal in wastewater treatment plants – are classified as a group of new and rapidly emerging pollutants which have been proven to have a negative impact onto water organisms. In order to ensure the proper protection of human health and the environment there is an urgent necessity of determining pharmaceuticals in clinical, cosmetic, food and environmental samples. Gas (GC) and high performance liquid chromatography (HPLC) are valuable techniques for such determination, especially when they are coupled with mass spectrometry (GC-MS; LC-MS) or tandem mass spectrometry (GC-MS/MS; LC-MS/MS). The purpose of this paper is to present an analysis of sustainability features of analytical techniques in the light of necessity to determine trace amounts of pharmaceuticals in the aforementioned different matrices. Using the Delphi method we performed an analysis of the key sources of the competitive advantages of the application of GC and GC-MS techniques for determining the pharmaceutical residue in clinical, cosmetic, food and environmental samples – compared to techniques based on HPLC or LC-MS. The analysis covered the following areas: (i) the features of the technique, (ii) the price, and (iii) the applicability in various sectors of economy.
PL
Rozwój zrównoważony jest bezpośrednio związany z ochroną środowiska, w tym z obniżeniem stresu antropogenicznego. W związku z rosnącym zużyciem farmaceutyków w wielu sektorach gospodarki, w tym między innymi w medycynie, weterynarii, sektorze farmaceutycznym, kosmetycznym oraz ich niepełnym usuwaniem przez oczyszczalnie ścieków, pozostałości farmaceutyków docierają do środowiska, gdzie mogą oddziaływać na organizmy tam bytujące. W celu zapewnienia właściwej ochrony zdrowia ludzkiego oraz środowiska niezbędnym jest oznaczanie pozostałości farmaceutyków w próbkach klinicznych, kosmetycznych, żywieniowych oraz środowiskowych. Techniki oparte na chromatografii takie jak: chromatografia gazowa (GC - Gas Chromatography), wysokosprawna chromatografia cieczowa (HPLC - High Performance Liquid Chromatography) są szczególnie przydatne w oznaczaniu farmaceutyków w szczególności, kiedy techniki te są sprzężone ze spektrometrią mas (GC-MS, LC-MS) lub tandemową spektrometrią mas (GC-MS/MS; LC-MS/MS). Celem niniejszego artykułu jest analiza przewag konkurencyjnych techniki, jaką jest chromatografia gazowa w kontekście wymagań zrównoważonego rozwoju. Wykorzystując metodę delficką przenalizowano użyteczność i przewagi chromatografii gazowej w oznaczaniu pozostałości farmaceutyków w różnych próbkach - w porównaniu do technik opartych na HPLC oraz HPLC-MS. Na podstawie przeprowadzonych badań na rynku polskim, którymi objęto 277 podmiotów wykorzystujących w swojej działalności techniki analityczne, przedstawiono możliwości zastosowania techniki GC w poszczególnych sektorach gospodarki.
Rocznik
Strony
42--49
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • University of Gdansk, Poland
autor
  • University of Gdansk, Poland
  • University of Gdansk, Poland
  • University of Gdansk, Poland
  • University of Gdansk, Poland
Bibliografia
  • 1. Aurélien, B.D.H., Sylvie, B., Alain, D., Jérome, G. & Yves, P. (2013). Ecotoxicological risk assessment linked to the discharge by hospitals of bio-accumulative pharmaceuticals into aquatic media: The case of mitotane, Chemosphere, 93(10), pp. 2365-2372.
  • 2. Aznar, R., Sanchez-Brunete, C., Albero, B., Rodriguez, J.A. & Tadeo, J.L. (2014). Occurrence and analysis of selected pharmaceutical compounds in soil from Spanish agricultural fields, Environmental Science and Pollution Research, 21(6), pp. 4772-4782.
  • 3. Białk-Bielińska, A., Kumirska, J., Borecka, M., Caban, M., Paszkiewicz, M., Pazdro, K. & Stepnowski, P. (2016). Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples, Journal of Pharmaceutical and Biomedical Analysis, 121, pp. 271-296.
  • 4. Biswas, D. & Mitra, D. (2013). Green techniques in gas chromatography, in: Green Chromatographic Techniques, Springer Netherlands. pp. 103-212.
  • 5. Caban, M., Kumirska, J., Bialk-Bielińska, A. & Stepnowski., P. (2015). Current issues in pharmaceutical residues in drinking water, Current Analytical Chemistry, 12, pp. 249-257.
  • 6. Caban, M., Kumirska, J., Bialk-Bielinska, A. & Stepnowski, P. (2016). Analytical techniques for determining pharmaceutical residues in drinking water - state of art and future prospects, Current Analytical Chemistry, 12(3), pp. 237-248.
  • 7. Caban, M., Migowska, N., Stepnowski, P., Kwiatkowski, M. & Kumirska, J. (2012). Matrix effects and recovery calculations in analyses of pharmaceuticals based on the determination of B-blockers and B-agonists in environmental samples, Journal of Chromatography A, 1258, pp. 117-127.
  • 8. Caban, M., Mioduszewska, K., Łukaszewicz, P., Migowska, N., Stepnowski, P., Kwiatkowski, M. & Kumirska, J. (2014). A new silylating reagent - dimethyl(3,3,3-trifluoropropyl) silyldiethylamine - for the derivatisation of non-steroidal anti-inflammatory drugs prior to gas chromatography-mass spectrometry analysis, Journal of Chromatography A, 1346, pp. 107-116.
  • 9. Caban, M., Stepnowski, P., Kwiatkowski, M., Migowska, N. & Kumirska, J. (2011). Determination of ß-blockers and ß-agonists using gas chromatography and gas chromatography-mass spectrometry-a comparative study of the derivatization step, Journal of Chromatography A, 1218(44), pp. 8110-8122.
  • 10. Daughton, C.G. (2016). Pharmaceuticals and the Environment (PiE): Evolution and impact of the published literature revealed by bibliometric analysis, Science of the Total Environment, 562, pp. 391-426.
  • 11. del Caño, A. & de la Cruz, M.P. (2002). Integrated methodology for project risk management, Journal of Construction Engineering and Management, 128(6), p. 473.
  • 12. Fent, K., Weston, A. & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals, Aquatic Toxicology (Amsterdam, Netherlands), 76(2), pp. 122-159.
  • 13. Garrido Frenich, A., Martínez Vidal, J.L., Fernández Moreno, J.L. & Romero-González, R. (2009). Compensation for matrix effects in gas chromatography-tandem mass spectrometry using a single point standard addition, Journal of Chromatography A, 1216(23), pp. 4798-4808.
  • 14. Generowicz, A. & Iwanejko, R. (2017). Environmental risks related to the recovery and recycling processes of Waste Electrical and Electronic Equipment (WEEE), Problemy Ekorozwoju, 12(2), pp. 181-192.
  • 15. Görög, S. (2011). Advances in the analysis of steroid hormone drugs in pharmaceuticals and environmental samples (2004-2010), Journal of Pharmaceutical and Biomedical Analysis, 55(4), pp. 728-743.
  • 16. Hallowell, M.R. & Gambatese, J.A. (2010). Qualitative research: application of the Delphi method to CEM research, Journal of Construction Engineering and Management, 136(1), pp. 99-107.
  • 17. Hess, C., Sydow, K., Kueting, T., Kraemer, M. & Maas, A. (2018). Considerations regarding the validation of chromatographic mass spectrometric methods for the quantification of endogenous substances in forensics, Forensic Science International, 2813, pp. 150-155.
  • 18. Hou, J., Wan, W., Mao, D., Wang, C., Mu, Q., Qin, S. & Luo, Y. (2015). Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China, Environmental Science and Pollution Research, 22(6), pp. 4545-4554.
  • 19. Jóźwiakowski, K., Mucha, Z., Generowicz, A., Baran, S., Bielińska, J. & Wojcik, W. (2015). The use of multi-criteria analysis for selection of technology for a household WWTP compatible with sustainable development, Archives of Environmental Protection, 46(3), pp. 76-82.
  • 20. Liska, I. & Slobodník, J. (1996). Comparison of gas and liquid chromatography for analysing polar pesticides in water samples, Journal of Chromatography A, 733(1-2), pp. 235-258.
  • 21. Loos, R., Gawlik, B.M., Locoro, G., Rimaviciute, E., Contini, S. & Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European river waters, Environmental Pollution, 157(2), pp. 561-568.
  • 22. López-Serna, R., Petrović, M. & Barceló, D. (2012). Direct analysis of pharmaceuticals, their metabolites and transformation products in environmental waters using on-line TurboFlowTM chromatography-liquid chromatography-tandem mass spectrometry, Journal of Chromatography A, 1252, pp. 115-129.
  • 23. Mohamed, H.M. (2015). Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis, TrAC - Trends in Analytical Chemistry, 66, pp. 176-192.
  • 24. Petrie, B., Barden, R. & Kasprzyk-Hordern, B. (2014). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring, Water Research, 72, pp. 3-27.
  • 25. Petrović, M., Hernando, M.D., Díaz-Cruz, M.S. & Barceló, D. (2005). Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: A review, Journal of Chromatography A, 1067(1-2), pp. 1-14.
  • 26. Puckowski, A., Mioduszewska, K., Łukaszewicz, P., Borecka, M., Caban, M., Maszkowska, J. & Stepnowski, P. (2016). Bioaccumulation and analytics of pharmaceutical residues in the environment: A review, Journal of Pharmaceutical and Biomedical Analysis, pp. 127, pp. 232-255.
  • 27. Rabiet, M., Togola, A. & Brissaud, F. (2006). Consequences of Treated water recycling as regards pharmaceuticals and drugs in surface and ground waters of a medium-sized Mediterranean catchment, Environmental Science & Technology, 40(17), pp. 5282-5288.
  • 28. Riemenschneider, C., Seiwert, B., Goldstein, M., Al-Raggad, M., Salameh, E., Chefetz, B. & Reemtsma, T. (2017). An LC-MS/MS method for the determination of 28 polar environmental contaminants and metabolites in vegetables irrigated with treated municipal wastewater, Analytical Methods, 9, pp. 1273-1281.
  • 29. Sadkowska, J., Caban, M., Chmielewski, M., Stepnowski, P. & Kumirska, J. (2017). Environmental aspects of using gas chromatography for determination of pharmaceutical residues in samples characterized by different composition of the matrix, Archives of Environmental Protection, 43(3), pp. 3-9.
  • 30. Santos, L.H.M.L.M., Araújo, A.N., Fachini, A., Pena, A., Delerue- -Matos, C. & Montenegro, M.C.B S.M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment, Journal of Hazardous Materials, 175(1-3), pp. 45-95.
  • 31. Sousa, J.C.G., Ribeiro, A.R., Barbosa, M.O., Pereira, M.F.R. & Silva, A.M.T. (2018). A review on environmental monitoring of water organic pollutants identified by EU guidelines, Journal of Hazardous Materials, 344, pp. 146-162.
  • 32. Tadeo, J., Sánchez-Brunete, C., Albero, B., García-Valcárcel, A. & Pérez, R. (2012). Analysis of emerging organic contaminants in environmental solid samples, Open Chemistry, 10(3).
  • 33. Togola, A. & Budzinski, H. (2008). Multi-residue analysis of pharmaceutical compounds in aqueous samples, Journal of Chromatography A, 1177, 1, pp. 150-158,
  • 34. Vazquez-Roig, P., Segarra, R., Blasco, C., Andreu, V. & Picó, Y (2010). Determination of pharmaceuticals in soils and sediments by pressurized liquid extraction and liquid chromatography tandem mass spectrometry, Journal of Chromatography A, 1217, 16, pp. 2471-2483.
  • 35. World Health Organization (2012). Pharmaceuticals in drinking- -water, Geneva 2012.
  • 36. Załęska-Radziwiłł, M., Łebkowska, M., Affek, K. & Zarzeczna, A. (2011). Environmental risk assessment of selected pharmaceuticals present in surface waters in relation to animals, Archives of Environmental Protection, 37(3), pp. 31-42.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8e2e6bd-82fd-464f-b32b-04ccc7d04342
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.