PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of Modified Biosorbents Based on Walnut Shells in the Processes of Wastewater Treatment from Heavy Metal Ions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The problem of utilizing plant wastes of the agro-industrial complex is equally important and urgent. In this regard, it is advisable to develop a complex technology of plant waste application to solve the ecological problems of environmental pollution with heavy metals. Modification of walnuts shells with orthophosphoric acid has proven to be a promising process for obtaining the biosorbents with the efficient sorption properties. It was found out that the increase in the concentration of inorganic acid in modification time promotes the improvement in sorption capacity. Such biosorbents can be used in low-waste water demineralization systems. The utilization of waste biosorbents through the use in the composition of building materials is effective from an economic point of view. It was shown that the biosorbent acts as a fine additive; the increase in normal density and acceleration in hardening time takes place. At the same time, the compressive strength of the cement with the application of biosorbents decreases slightly. The results show that the modified walnuts shells have a slightly adverse effect on the hardening time of cement.
Rocznik
Strony
128--133
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Laboratory of Kinetics and Mechanisms of Chemical Transformations on the Surface of Solids, Department of Physico-Chemistry of Carbon Nanomaterials, O.O. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, General Naumov St. 17, 03164 Kyiv, Ukraine
autor
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Ecology and Technology of Plant Polymers, Faculty of Chemical Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Peremogy Avenu 37/4, 03056 Kyiv, Ukraine
  • Department of Commodity Science and Food Expertise, Kyiv national university of trade and economics, Kyoto str. 19, 02156, Kyiv, Ukraine
  • Department of Commodity Science and Food Expertise, Kyiv national university of trade and economics, Kyoto str. 19, 02156, Kyiv, Ukraine
  • Department of Ecology and Environmental Technologies, Admiral Makarov National University of Shipbuilding, Heroiv Ukrainy avе., 9, 54025, Mykolaiv, Ukraine
  • Department of Environmental Chemistry, Admiral Makarov National University of Shipbuilding, Heroiv Ukrainy avе., 9, 54025, Mykolaiv, Ukraine
Bibliografia
  • 1. Gomelya N.D., Trus I.N., &Nosacheva Y.V. 2014. Water purification of sulfates by liming when adding reagents containing aluminum. Journal of Water Chemistry and Technology, 36(2), 70–74.
  • 2. Buzylo V., Pavlychenko A., Savelieva T., Borysovska O. 2018. Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. Paper presented at the E3S Web of Conferences, 60.
  • 3. Malik L.A., Bashir A., Qureashi, A., Pandith, A.H. 2019. Detection and removal of heavy metal ions: A review. Environmental Chemistry Letters, 17(4), 1495–1521.
  • 4. Vardhan K.H., Kumar P.S., Panda R.C. 2019. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290.
  • 5. Banks J.L., Ross D.J., Keough M.J., Eyre B.D., Macleod C. K. 2012. Measuring hypoxia induced metal release from highly contaminated estuarine sediments during a 40day laboratory incubation experiment. Science of the Total Environment, 420, 229–237.
  • 6. Trus I., Radovenchyk I., Halysh V., Skiba M., Vasylenko I., Vorobyova V., Hlushko O., Sirenko L. 2019. Innovative approach in creation of integrated technology of desalination of mineralized water. Journal of Ecological Engineering, 20(8), 107–113.
  • 7. Skiba M. I., Vorobyova V. 2019. The plasma-chemical formation of polysorbate 80-coated silver nanoparticles and composite materials for water treatment. Pigment and Resin Technology, 48(5), 431–438.
  • 8. Gomelya M., Trus I., Shabliy T. 2014. Application of aluminium coagulants for the removal of sulphate from mine water. Chemistry and Chemical Technology, 8(2), 197–203.
  • 9. Tian Z., Zhang L., Ni C. 2019. Preparation and flocculation properties of modified alginate amphiphilic polymeric nano-flocculants. Environmental Science and Pollution Research, 26(31), 32397–32406.
  • 10. Edebali S., Pehlivan E. 2014. Evaluation of cr(III) by ion-exchange resins from aqueous solution: Equilibrium, thermodynamics and kinetics. Desalination and Water Treatment, 52(37–39), 7143–7153.
  • 11. Fu L., Shuang C., Liu F., Li A., Li Y., Zhou Y., Song H. 2014. Rapid removal of copper with magnetic poly-acrylic weak acid resin: Quantitative role of bead radius on ion exchange. Journal of Hazardous Materials, 272, 102–111.
  • 12. Gossuin Y., Hantson A., Vuong Q.L. 2020. Low resolution benchtop nuclear magnetic resonance for the follow-up of the removal of Cu2+ and Cr3+ from water by amberlite IR120 ion exchange resin. Journal of Water Process Engineering, 33.
  • 13. Ambiado K., Bustos C., Schwarz A., Bórquez R. 2017. Membrane technology applied to acid mine drainage from copper mining. Water Science and Technology, 75(3), 705–715.
  • 14. Gomelya M.D., Trus I.M., Radovenchyk I.V. 2014. Influence of stabilizing water treatment on weak acid cation exchange resin in acidic form on quality of mine water nanofiltration desalination. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5, 100–105.
  • 15. Oden M.K., Sari-Erkan H. 2018. Treatment of metal plating wastewater using iron electrode by electrocoagulation process: Optimization and process performance. Process Safety and Environmental Protection, 119, 207–217.
  • 16. Chen X., Ren P., Li T., Trembly J.P., & Liu X. 2018. Zinc removal from model wastewater by electrocoagulation: Processing, kinetics and mechanism. Chemical Engineering Journal, 349, 358–367.
  • 17. Xu T., Zhou Y., Lei X., Hu B., Chen H., & Yu G. 2019. Study on highly efficient cr(VI) removal from wastewater by sinusoidal alternating current coagulation. Journal of Environmental Management, 249.
  • 18. Malovanyy M., Sakalova H., Vasylinycz T., Palamarchuk O., Semchuk J. 2019. Treatment of effluents from ions of heavy metals as display of environmentally responsible activity of modern businessman. Journal of Ecological Engineering, 20(4), 167–176.
  • 19. Mykhailenko N., Makarchuk O., Dontsova, T., Gorobets S., Astrelin I. 2015. Purification of aqeous media by magnetically operated saponite sorbents. Eastern-European Journal of Enterprise Technologies, 4(10), 13–20.
  • 20. Sabadash V., Mylanyk O., Matsuska O., & Gumnitsky J. 2017. Kinetic regularities of copper ions adsorption by natural zeolite. Chemistry and Chemical Technology, 11(4), 459–462.
  • 21. Gorobets S. and Karpenko Y. 2017. The development of a magnetically operated biosorbent based on the yeast saccharomyces cerevisiae for removing copper cations Cu2+. Eastern-European Journal of Enterprise Technologies, 1(6–85), 28–34.
  • 22. Halysh V., Sevastyanova O., Riazanova A. V., Pasalskiy B., Budnyak T., Lindström M. E., Кartel M. 2018. Walnut shells as a potential low-cost lignocellulosic sorbent for dyes and metal ions. Cellulose, 25(8), 4729–4742.
  • 23. Pereira P.H.F., Voorwald H.C.J., Cioffi M.O.H., Mullinari D.R., Da luz S.M., Da silva M.L.C.P., 2011. Sugarcane bagasse pulping and bleaching: thermal and chemical characterization. BioResources. 6(3), 2471–2482.
  • 24. Novo L.P., Gurgel L. V.A., Marabezi K., da SilvaCurvelo A.A., 2011. Delignification of sugarcane bagasse using glycerol–water mixtures to produce pulps for saccharification. Bioresour. Technol. 102(21), 10040–10046.
  • 25. Deykun I., Halysh V., Barbash V. 2018. Rapeseed straw as an alternative for pulping and papermaking. Cellulose Chemistry and Technology, 52(9–10), 833–839
  • 26. Halysh V., Sevastyanova O., De Morais D., Riazanova A., Lindström M.E., Gomelya M. 2019. Effect of oxidative treatment on composition and properties of sorbents prepared from sugarcane residues. Industrial Crops and Products, 139(1), 111566.
  • 27. Kartel, M., Galysh, V., 2017. New composite sorbents for caesium and strontium ions sorption. Chemistry Journal of Moldova. 12(1), 37–44.
  • 28. Trus I.M., Fleisher H.Y., Tokarchuk V.V., Gomelya M.D., Vorobyova V.I. 2017. Utilization of the residues obtained during the process of purification of mineral mine water as a component of binding materials. Voprosy Khimii i Khimicheskoi Tekhnologii, (6), 104–109.
  • 29. Breesem K.M., Faris F.G., Abdel-Magid I.M. 2014. Reuse of alum sludge in construction materials and concrete works: a general overview. Infrastucture university Kuala Lumpur research journal, 2 (1), 20–30.
  • 30. Araujo F., Scalize P., Lima J., Vieira N., Albuquerque A., Santos I. 2015. Soil-cement floor produced with alum water treatment residues. International journal of civil and environmental engineering, 9 (3), 377–380.
  • 31. Krivenko P., Kovalchuk O., Pasko A. 2018. Utilization of industrial waste water treatment residues in alkali activated cement and concretes. Key engineering materials, 761, 35–38.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8e2c3f1-0b6e-4e2f-8369-069a77e5a4cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.