PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Internet of Things based Speed Control for an Industrial Electric Vehicle using ARM Core

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increasing greenhouse gases impose severe concern over the environment resulting in rising dangerous calamities of climate change in the form of floods, etc. Major disadvantages like intermittency of electric vehicles need to be charged after traveling fixed distance. The paper develops an algorithm for a selected industrial electric vehicle to be controlled at different speeds that envisages working on real time Internet of Things (IoT) based Global Po-sitioning System (GPS) signals. It engages the ARM core based STM micro-controller in conjunction with mesh networked Bluetooth Low Energy (BLE) to govern the operations besides enabling it to be dynamically monitored. The system design considers the vehicle parameters that include the speed of vehicle and the engine, State of Charge (SoC) and State of Health (SoH) of battery together with real time GPS based navigation system using IoT bundled GPS based maps interface. The methodology involves a closed loop monitoring with specified sequence of steps that augur the system to operate at defined speed over designated work shifts and schedules. The procedure introduces an embedded C environment with a process of unit-testing based simulation to capture the merits of schema in terms of an improved vehicle performance under varying parametric conditions.
Twórcy
  • Department of Electrical Engineering, Annamalai University, Chidambaram, Tamil Nadu, India
autor
  • Department of Electrical Engineering, Annamalai University, Chidambaram, Tamil Nadu, India
autor
  • Department of Electrical and Electronics Engineering, Anna University, Chennai, Tamil Nadu, India
Bibliografia
  • 1. Al-Othman A.K., Nabil A.A., Al Sharidah M.E., El-Naggar K.M. and Bader A.N. 2016. Speed Control of Electric Vehicle. In: International Conference on Mechatronics, Control and Automation Engineering, MCAE’2016, 32–33.
  • 2. Al-Sultan S., Al-Doori M.M., Al-Bayatti A.H. and Zedan H. 2014. A comprehensive survey on vehicular Ad Hoc network. Journal of Network and Computer Applications, 37, 380–392. doi: 10.1016/j.jnca.2013.02.036
  • 3. Ampere Industrial Vehicle – Mitul, by Greaves Cotton, https://amperevehicles.com/industrial-vehicles/, (accessed on 2021-Sep-06)
  • 4. ClubTechnical, 2020. Automobile. Definition, Types, Parts. [Fully explained with images], ClubTechnical Mechanical Engineering Blog, 1–14.
  • 5. Fabian J., Hirz M., and Krischan K. 2014. State of the art and future trends of electric drives and power electronics for automotive engineering. SAE International Journal of Passenger Cars-Electronic and Electrical Systems, 7(2014-01-1888), 293-303.
  • 6. Indira Gandhi National Open University, Automobile Engineering Textbook, UNIT 1 Introduction to Automobile Engineering, 2016, 1–10.
  • 7. Iora P. and Tribioli L. 2019. Effect of ambient temperature on electric vehicles’ energy consumption and range: Model definition and sensitivity analysis based on nissan leaf data. World Electric Vehicle Journal, 10(2), 1–15; doi: 10.3390/wevj10010002
  • 8. Jo D.-Y., Kwak S., and Kim N. 2011. Development of fuel-efficient construction equipment. In: 8th International Conference on Power Electronics - ECCE Asia. doi: 10.1109/icpe.2011.5944374
  • 9. Lajunen A. and Suomela J. 2012. Evaluation of energy storage system requirements for hybrid mining loader. IEEE Transactions on Vehicular Technology, 61(8), 3387–3393.
  • 10. Lajunen A., Suomela J., Pippuri J., Tammi K., Lehmuspelto T. and Sainio P. 2016. Electric and hybrid electric non-road mobile machinery – present situation and future trends. World Electric Vehicle Journal, 8(1), 172–183. doi: 10.3390/wevj8010172
  • 11. Liukkonen M., Lajunen A. and Suomela J. 2013. Feasibility study of fuel cell-hybrid power trains in non-road mobile machineries. Automation in Construction, 35, 296–305.
  • 12. Praphul M.N., Divya M., Maity B., Bindhu V. and Nivedita C.S.R. 2018. Exact rate control of electric vehicle using ARM with battery saving mode. In: International Conference on Design Innovations for 3Cs Compute Communicate Control (ICDI3C’2018), 88-91. doi: 10.1109/icdi3c.2018.00027
  • 13. Mohammad A., Abedin M.A. and Khan M.Z.R. 2016. Microcontroller based control system for electric vehicle”. In: 5th International Conference on Informatics, Electronics and Vision (ICIEV’2016), 693-696. doi: 10.1109/iciev.2016.7760090
  • 14. Mol C., O’Keefe M., Brouwer A. and Suomela J. 2010. Trends and insight in heavy-duty vehicle electrification. World Electric Vehicle Journal, 4(2), 307-318.
  • 15. Paraszczak J., Svedlund E., Fytas K. and Laflamme M. 2014. Electrification of loaders and trucks – a step towards more sustainable underground mining. In: International Conference on Renewable Energies and Power Quality (ICREPQ’2014), Spain, 8-10.
  • 16. Porsche Engineering, 2011. Thermal management in vehicles with electric drive system. Porsche Engineering Magazine, 1, 1-3.
  • 17. Reif K. 2014. Brakes, brake control and driver assistance systems. Automotive mechatronics. Control Engineering Practice, 12(11), 1343–1351. doi: 10.1016/j.conengprac.2003.10.004
  • 18. Schweppe H., Roudier Y., Weyl B., Apvrille L. and Scheuermann D. 2011. Car2x communication: securing the last meter-a cost-effective approach for ensuring trust in car2x applications using in-vehicle symmetric cryptography. In: IEEE Vehicular Technology Conference (VTC’2011), 1-5.
  • 19. Turcian D. and Dolga V. 2020. Intelligent speed control system for electric vehicle. In: IOP Conf. Series: Materials Science and Engineering, 012064 IOP Publishing, 1–12, doi: 10.1088/1757-899X/997/1/012064,
  • 20. Vellucci F., Pede G., Ceraolo M. and Huria T. 2012. Electrification of off-road vehicles: examining the feasibility for the Italian market. World Electric Vehicle Journal, 5(1), 101-117. doi: 10.3390/wevj5010101
  • 21. Wang Z., Wu G. and Barth M.J. 2018. A review on cooperative adaptive cruise control (CACC) systems: Architectures, controls, and applications. In: 21st International Conference on Intelligent Transportation Systems (ITSC’2018) 2884-2891. doi: 10.1109/itsc.2018.8569947
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8e2576c-8ee6-4374-a56d-62349f8072ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.