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Abstract. Maintaining data warehouses and ETL processes is becoming in-

creasingly difficult. For this reason, we introduce a similarity measure on ETL

processes, based on the edit distance of a graph, which models the process. We

show both the exact way how to calculate it and heuristic approaches to com-

pute the estimated similarity more quickly. We propose methods to improve

graph edit distance based on the assumption that the ETL process model is a

directed acyclic graph.
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1. Introduction

A data warehouse is a large, centralized repository of data that is specifically
designed to support business intelligence (BI) activities such as data analysis, re-
porting, and data mining. It is a complex, integrated system that collects, stores, and
manages data from various sources, including operational systems, external sources,
and other data warehouses.

The data in a warehouse is organized and structured in a way that makes it easy
for users to access and analyse, regardless of its original format or location. This
is achieved through a process known as ETL (Extract, Transform, Load), which

1This work is the result of research project no. DWD/4/66/2020 supported and funded by
Ministry of Education and Science in Poland.
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involves extracting data from multiple sources, transforming it into a standardized
format, and loading it into the warehouse.

Data warehouses are used by organizations of all sizes and across a variety
of industries to support decision-making processes and gain valuable insights into
business operations. They enable organizations to store, analyse, and act on vast
amounts of data in real-time, helping to drive business growth and success. This is
a critical component of modern data management.

One of the most growing areas of data management nowadays is so-called data
governance. The key element of data governance is the automatic analysis of data
flow, or so-called Data Lineage. There are several reasons for this. In industries
such as banking and financial services, a major factor is the regulations that have
been growing for many years (BCBS 239 standard [33], DFAST – Dodd-Frank Act
Stress Tests, CCAR – Comprehensive Capital Analysis and Review). Also outside
the financial sector, Data Lineage, i.e. knowledge of how data is processed in an
organization, always supports the efficiency of problem analysis work and planning
for future changes (so-called impact analysis).

In the area of Data Lineage, one of the most important trends that has been
observed for several years now is the increasing amount of information available.
Thanks to advanced parsing and analysis techniques, organizations are able to gather
huge amounts of information on how data are processed and stored. However, it
is becoming increasingly challenging to analyse this information, and thus finding
among the millions of connections those that are relevant for solving a particular
problem.

One of the biggest challenges in this area is data flow analysis in multi-level
graphs modelling ETL processes, spatial distribution of flows containing tens of
thousands of processes, and automatic similarity analysis of hundreds of thousands
of complex data processing workflows. These are challenges where, like nowhere
else, cooperation between science and business is crucial, because such industrial-
scale data flow analysis involves analysing problems for which there are currently no
ready-made solutions [1].

Although ETL processes can be defined using the GUI, ultimately the process
must be converted to executable code. This code must be characterized not only
by an appropriate level of correctness (functional suitability, functional correctness,
functional appropriateness), but also by an appropriate level of non-functional char-
acteristics, in particular maintainability, or more precisely – its sub-characteristics:
modifiability, analysability, and reusability (cf. ISO 25010 quality model [24]).

Maintainability of the ETL workflows is crucial for the cost of the ETL life-
cycle. Maintainability can be improved by using static analysis [23] and depends
on a number of parameters, e.g., the cost of handling evolution events during the
ETL lifecycle [41]. In particular, the code implementing the ETL process should be
free of code smells that increase technical debt, which negatively affects the cost of
maintenance. One of the well-known code smells is code duplication, which violates
the DRY rule (Don’t Repeat Yourself). This code smell can be analysed in relation
to not a single ETL process, but to a collection of such processes.

One of the key metrics to help identify potential repetitions or, in general, simi-
larities between individual fragments of two ETL processes is the process similarity
measure. Searching for similarities in ETL processes has the following advantages:
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� it allows us to increase maintainability by including repetitive code in a sepa-
rate function and referring in other (parts of) ETL processes to this subprocess;
if some change is needed in this subprocess, it will have to be done only in one
place, and not in many;

� it allows us to determine whether a given two ETL processes are similar or
even identical;

� it facilitates process definition by, for example, suggesting to the developer
certain functions to use, e.g., if the system recognizes that the process under
construction is identical to a part of an existing process in the database, it can
prompt the user whether they want to implement this very process, which will
save time and avoid implementation errors;

� it makes it easier to analyse and read ETL processes by simplifying their
structure that references to subprocesses.

In this paper, we show how to calculate the similarity between the ETL processes,
and we propose some heuristic approaches to count the estimated similarity more
quickly. The structure of this paper is as follows. In section 2. we formalize the
ETL processing in more detail, presenting the tool called MetaDex, used to extract
metadata from various sources to obtain the lineage. In section 3. we introduce
the concept of a graph edit distance, which will be used in our approach. Section
4. discusses the related work on the ETL similarity and the Graph Edit Distance
application. In section 5. we define the ETL process using the graph theory. We
also show how to adapt MetaDex to our model. Section 6. shows how to use Graph
Edit Distance to solve the ETL similarity problem. In section 7. we present the
experiments and their results on the real ETL processes. Section 8. follows with the
conclusions.

2. ETL Process Modelling

The proper modelling of the ETL process is essentially the foundation for the suc-
cess of many data warehousing projects, as the ETL processes form the core of data
warehousing architectures. There is no standard model for the representation of this
process. Several researchers proposed some modelling techniques based on various
formalisms, such as unified modelling language (UML) [43], conceptual constructs
[39, 42], ontology [4], QoX-driven ETL modelling [44], OHM model [13], and graph-
ical flow, which includes business process model notation (BPMN) [32, 37]. In [40]
a graph model was proposed, similar to the one shown in the subsection 2.2.. Also,
worth mentioning is the research in topic lineage tracing [12], where the authors
are focusing on data that undergoes a sequence of transformations. A systematic
literature review, with a more detailed analysis of the approaches and differences, is
presented by Dhaouadi in [14].
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Figure 1.: Sample ETL job

2.1. ETL Process Granularity

The ETL process can be understood at different levels of generality. A general
view speaks of data extraction, processing and recording. This consists of various
procedures that call themselves at specific times or are called by other procedures.
However, to support code maintenance tools, we need to look at what the data look
like at the most granular level, where data operations are directly defined. Figure 1
shows an example of the procedure, written using the Informatica Intelligent Cloud
Services [22].

There are many ETL tools, as well as mainframe systems, data manipulation
languages (e.g. SQL), and general-purpose languages that can be used for data
processing. However, different ETL tools allow different operations and work with
different models of the ETL processes. Therefore, a common model, which stan-
dardizes this, is needed.

2.2. MetaDex

MetaDex is a tool used to extract metadata from various sources to obtain lineage.
It automatically analyses data processing, extracts the most granular metadata and
tracks data dependencies across data sources. MetaDex is currently a product of
Informatica, but its concept was demonstrated by Duda et al. in 2012 [18]. MetaDex
consists of several components, but for us, the most important is the common rep-
resentation of ETL processes. A simple example of the MetaDex use for the sample
SQL procedure, shown in Listing 1, is presented in Figure 2.

Listing 1: Example of a SQL procedure

SELECT 2 · a0 + b0 INTO OUT (out0) FROM A

JOIN B ON a1 = b1
WHERE a20 + b20 = 1
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Figure 2.: Metadex model of the SQL procedure shown in 1

Detailed expressions, used in join and where conditions, are contained in the cor-
responding transformation, similarly to the expression 2 · a0 + b0 shown in the last
transformation before output table.

The MetaDex model is represented by a nested graph, consisting of two levels.
In the outer layer, we have a representation of the overall ETL workflows of the data
stream, e.g., tables, transformations, filters or joins. Each vertex represents a state
during the processing of a data stream. The inner layer provides a more detailed
description of how the values for each field (column) are calculated. Each field con-
tains an expression that depends on the fields found in the previous transformation.
More formally, each expression is a calculation tree, where the root is the given field
and the leaves are the fields from the source processing vertex. In addition, each
transformation can have dedicated information, such as the type of join. Frequent
information of the processing vertex is some expression, called control expression,
which is not used for calculated value, but it impacts the whole data stream. Ex-
amples include the previously mentioned join and filter transformations, but can
also include columns used in aggregation (e.g. group by in SQL) or other relevant
expressions that affect the resulting data stream (but not its value). Therefore, two
types of directed edges are distinguished:

� value, if the processing source has an impact on the values of the data stream,
e.g., addition;

� control, if the processing source has an impact on the data stream, but not on
values, e.g., data filtering.

The model tries to reflect as closely as possible the flow defined in the most
popular ETL tools. Each transformation or processing of the data stream is usually
represented by one outer vertex. The whole procedure is a directed, acyclic graph,
where leaves must be sources (input tables, variables or constants), and roots must
be targets (output tables). The model includes dozens of different data processing
elements available in various ETL tools, as well as a diverse representation of input
and output data. In the end, we have a universal representation of the ETL process,
so we can much more easily compare processes with each other.
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Table 1.: Table of permitted editing operations together with their costs

edit operation edit cost
substitute α-labelled node by α′-labelled node cV (α, α

′)
delete isolated α-labelled node cV (α, ϵ)
insert isolated α-labelled node cV (ϵ, α)
substitute β-labelled edge by β′ - labelled edge cE(β, β

′)
delete β-labelled edge cE(β, ϵ)
insert β-labelled edge cE(ϵ, β)

3. Graph Edit Distance

Graph Edit Distance is a generalization of Levenshtein distance [28]. In the case
of graphs, both edges and isolated vertices are allowed to be inserted and removed.
However, a problem defined in this way is NP-hard, even for uniform edit costs [45],
and APX-hard for metric edit costs [29]. We consider directed, labelled (both vertex
and edge) graphs. The following operations on the graph are defined:

Each such operation transforms a graph into another graph. We can consider
a sequence of such operations. Our goal is to find an edit path, i.e. an operation
path that transforms graph G1 into graph G2. Then the edit distance for the graphs
G1 = (V1, E1), G2 = (V2, E2) is defined as

GED(G1,G2) = min
(e1,...,en)∈γ(G1,G2)

n∑
i=1

c(ei),

where γ(G1,G2) is the set of all possible edit paths, transforming graph G1 into graph
G2, and c(ei) is a cost of the i-th vertex (cV ) or edge (cE) operation.

Despite the clear definition, it is unclear how to find a solution. The number
of possible paths can be infinite, and even for a particular path one has to check
whether two graphs are isomorphic [34], which is a difficult problem and to date, no
polynomial solution is known. Instead, we can define the node map as follows.

Definition 1 (Node Map). Relation Π ⊂ (V1 ∪{ϵ})× (V2 ∪{ϵ}) is called node map,
if it satisfies the following conditions:

� |{v | v ∈ (V1 ∪ {ϵ}) ∧ (u, v) ∈ Π}| = 1, for every u ∈ V1

� |{u | u ∈ (V2 ∪ {ϵ}) ∧ (u, v) ∈ Π}| = 1, for every v ∈ V2

Intuitively, a node map is a bijection between graphs, except that we allow a
vertex to be marked as inserted or deleted and assign ϵ to it. With node map, we
can create an induced edit path. Directly from the definition, we get the needed
operations on vertices. If both vertices of an edge e1 have been mapped to the end
of an edge e2 in the second graph, then in the edit path we add substitution e1 into
e2. Otherwise, we either insert an edge (when e1 does not exist) or delete an edge
(when e2 does not exist). We must additionally request that the deletion of edges
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be done at the beginning and their addition at the end, so that non-isolated vertices
are never deleted. Then, the edit distance can be defined as

GED(G1,G2) = min{c(Pπ) | π ∈ Π(G1,G2)},

where Pπ is the edit path induced from the mapping π.

Various approaches have been tried, both to calculate the exact edit distance
and the approximation distance. In Justice’s paper [26] it was shown how the GED
problem can be reduced to linear programming, for solving which many optimization
tools exist. It is also popular to try to use tools for assignment problems. Riesen
[35] suggested using the Hungarian algorithm to obtain an approximate solution.
On the other hand, Bougleux [8] showed how to use quadratic assignment problem
for solving graph edit distance. In addition, many heuristics have been developed
and compared in the Blumenthal’s paper [6]. Blumenthal, in his PhD dissertation
[5], described and compared different approaches to calculating edit distance.

3.1. Linear Sum Assignment Problem

The Linear Sum Assignment Problem (LSAP), also known as the Assignment Prob-
lem, is a classic optimization problem in mathematics and operations research. It
involves finding the optimal assignment of a set of jobs or tasks to a set of workers,
machines, or resources, given a set of costs or penalties associated with each possible
assignment. The problem has a polynomial solution, which can be found by the so-
called Hungarian algorithm [27, 31]. Several improvements for this algorithm exist,
such as the Jonker–Volgenant algorithm [25], or the use of algorithms to find the
maximal flow like Ford–Fulkerson algorithm [20]. LSAP is a popular heuristic that
can be used both to find an approximate solution [35] and a heuristic for finding
an exact solution, using, for example, the A* algorithm [36]. This is because when
we have two graphs with the identical number of vertices, and we ignore the cost of
edge deletion, the GED is reduced to an assignment problem.

3.2. Linear Sum Assignment Problem with Error-Correction (LSAPE).

When the graphs are of different sizes, it is required to extend the LSAP problem
with editions [7]. In the simplest solution [10], artificial vertices can be added to
the second graph, which is responsible for deleting vertices from the first one (and
vice-versa). Then, the assignment to the corresponding vertex is determined by the
cost of deletion while preventing assignment to the remaining artificial vertices (e.g.,
by assigning the infinite weight). However, the cost matrix is largely filled with
zeros (cost between artificial vertices in both graphs) and several modifications of
the Hungarian algorithm have been developed for such a case [38, 9].
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4. Related Work

4.1. ETL similarity

The topic of the similarity of ETL processes seems to be an important issue. De-
spite this, it has not been addressed very often. In [1], a high-level ETL process
management system was proposed, which allows the user to find the most similar
ETL processes. However, similarity itself was not defined, due to its difficulty. The
paper [2] introduces a so-called match operator between two ETL processes. Pre-
defined weights of interdependent transformation pairs were used in this work, and
the similarity was calculated as the cosine of two vectors. To our best knowledge,
it is the first approach using graph edit distance to measure the similarity of ETL
processes.

4.2. Business Process Model similarity

The similarity of Business Process Models is a widely recognized and significant
matter. It serves various purposes, including assessing the alignment between refer-
ence and actual models, identifying related models within a repository, and finding
services that comply with a specification provided by a process model. A summary
of the methods used in this problem is presented in the paper [17]. In [16] various
techniques for defining BPM similarity were presented, such as node matching sim-
ilarity, structural similarity and behavioural similarity. A comparison of different
approaches is shown in the survey paper [3]. In the case of comparing ETL pro-
cesses, it is much more important to find matched transformations than to calculate
exact similarity. In addition, it is much more useful to have an accurate measure for
similar processes, since they are mainly the ones that can be refactored.

Graph edit distance is mainly used where it is important for us to calculate fine-
grained similarity with many, but rather small graphs. It has been successfully used
for another similarity problem – malware detection in source code [19, 11]. The
use of graph edit distance in comparing BPM was presented in several papers. The
paper by Dijkman at al. [15] investigates the problem of ranking all process models
according to their similarity to a given process model. Several approaches have been
compared: greedy, exhaustive, heuristic and A*-based. The algorithm based on A*
achieved the best results, being slower only than the greedy algorithm. Grigori at al.
in their paper [21] develop matching techniques that operate on behaviour models
for service discovery. They faced similar problems as in this work, such as model
granularity or the non-trivial comparison of single vertices. The experiments focused
on different cut-offs in a state-space searching algorithm similar to A*.

In both papers, authors focused more on the application and demonstration of the
effectiveness of the A* algorithm. In contrast to their work, our goal is different. The
calculation of graph edit distance can be very time-consuming, even for relatively
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small graphs with 20 vertices. We propose modifications to the GED algorithm that
result in a significantly shorter runtime, especially when the ETL processes being
compared are similar.

5. Model

5.1. Graph model

Creating the common representation of ETL processes is not a trivial task. It is also
quite time-consuming to calculate the edit distance, so we will try to simplify the
model to apply the GED directly. Moreover, by doing so, we will get a representation
that will be much more flexible and adaptable to different models of the ETL-
processes.

The model used to compare the graphs will be a directed graph G = (V,E).
Instead of having vertex labels, we will expect to have for each vertex the cost of
deleting it, and for each pair of vertices from two graphs we define a function that
returns the cost of substitution one with the other. We allow two types of edge
labels (corresponding to a value and control dependencies), but there is no problem
with extending it for multiple edge labels.

5.2. Adapting MetaDex to graph model

The calculation of the cost values for vertex deletion and substitution can be done
in an arbitrary way. Since we will need all the costs for further calculations anyway,
we assume that we calculate them before running the GED, which can be used to
reduce the time speed in case of a more complex comparison.

In this work, we propose an approach that focuses mainly on expression com-
parison. For each outer vertex defined in Section 2.2. we collect the expressions
occurring in it and then flatten them into a vector using the bag-of-words model.
For example, for the expression ”a + b · c where b > d”, where a, b, c, and d are
values of some columns in some tables, we obtain the vector {”a” : 1, ”b” : 2, ”c” :
1, ”d” : 1, ” + ” : 1, ” · ” : 1, ” > ” : 1}. We do this separately for value and control
expressions, and we keep information about what type of transformation it is. The
cost of deletion is the sum of all values in the vector. When two transformations
are of different types, we assume that the substitution cost is equal to the sum of
deleting one and inserting the other. If the types are the same, the substitution cost
is the edit distance for the vectors (the sum of the absolute values of the differences
of all coordinates).
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5.3. Data Cleaning

ETL processes defined in this way may have information that we do not want to
compare. We consider processes defined at the lowest level, where they do not
usually occur alone. They often have defined parameters that are specified in the
wider scope, or provided by other procedures. Another example is parts of processes
that, for example, are responsible for logging, which is not part of the process activity.
Furthermore, the same operation can be performed in different ways, or at least in
different order.

Therefore, we do two things. We remove all transformations that are not the
source of any output table. The second thing is to standardize the most common
transformations: filter, join and transformer (calculation). We require the filter to
occur before the transformer if the calculation is independent of it. Furthermore,
if we are filtering data from only one join source, we require the filtering to occur
before the joining of the two sources.

6. Calculating the GED

ETL procedures are often small enough to calculate an exact GED. To calculate it,
we use the search algorithm A*. It creates a path from the starting vertex, each
time selecting a vertex x from the available unexplored vertices at a given step to
minimize the function

f(x) = g(x) + h(x),

where g(x) is a cost of mapped vertices, and h(x) is a heuristic cost of unmapped
vertices. To calculate h we use the Hungarian algorithm. The procedure is shown in
algorithm 1. Very importantly, this heuristic always returns a lower bound on the
true cost of matching, so that the A* algorithm always finds the optimal solution.
The only difference is that in our case, the graphs are directed. We assume that
edges directed in opposite directions are just different edges. We also decided that it
is hard to argue that value and control edges, or edges directed in opposite directions,
are similar, and the cost of substitution is equal to the cost of deleting one of them
and inserting the other.

We propose two improvements to the above algorithm. The first is to sort the
vertices in order to traverse neighbouring vertices and thus obtain the real cost
associated with editing edges faster. Since it may be difficult to define such an
order, here we benefit from the fact that the vast majority of ETL processes does
not contain cycles. In this case, it is enough to sort the vertices topologically.
The second proposal is to reduce the search tree in the A* algorithm. In most

2Formally p is a set of pairs of vertices, but sometimes it is more convenient to think that it
contains vertices from each graph and a function, which maps vertices from the first graph to the
second. This abuse of notation does not cause any serious problems.
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Algorithm 1: A* – Algorithm for Calculating the Exact GED

Input : Graphs G1 = (V1, E1), G2 = (V2, E2), where V1 = {u1, . . . , un1},
V2 = {v1, . . . , vn2}

1 Initialize OPEN as an empty priority queue;
2 Insert (u1 → w) to OPEN for all w ∈ V2;
3 Insert (u1 → ϵ) to OPEN ;
4 while no solution is found do
5 Select and remove p with minimum (g(p) + h(p)) from OPEN ;
6 if p is a valid edit path then
7 return p as the solution;
8 else
9 Assume p contains2{u1, . . . , uk} ⊆ V1 and W ⊆ V2;

10 if k ≤ n1 then
11 Insert p ∪ (uk+1 → vi) to OPEN for all vi ∈ V2 \W ;
12 Insert p ∪ (uk+1 → ϵ) to OPEN ;

13 else
14 Insert p ∪

⋃
vi∈V2\W (ϵ → vi) to OPEN ;

Output: An optimal edit path from G1 to G2.

applications of using GED to calculate the similarity of ETL processes, it will be
much more important to obtain a similarity measure for processes that are similar.
Taking advantage of the fact that these processes are acyclic, we can restrict to
comparing vertices only with those that are in a similar place in the second graph.
More formally, we perform the search in A* according to the topological order. For
each vertex, we calculate distance from input and output tables. Then, we restrict
the search to vertices whose distance from the input or output tables does not differ
from a certain fixed value.

7. Experiments

7.1. Datasets

We used 3 datasets from the actual, real-world projects for our experiments: A,
B, C3. The datasets contain 1500, 7500 and 14000 processes respectively, with an
average number of 41, 45 and 33 vertices.

3NDA Statement. Due to NDA and intellectual property issues, the company whose data
was used for the study did not agree to identify and describe it in detail. Therefore, the datasets
(containing the sets of the ETL processes) used in this research are anonymized and described as
datasets A, B and C.
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7.2. Compared algorithms

We implemented the two most popular algorithms for solving the edit distance prob-
lem as our baseline, together with two algorithms proposed by us:

� Hungarian [35] – the traditional inexact solver based on Hungarian algorithm.

� Hungarian-A* [36] – an exact solver based on A* search algorithm using
Hungarian algorithm as an estimation heuristic to guide search space explo-
ration

� Hungarian-A*-top – our proposal; a version of Hungarian-A*, with travers-
ing the vertices in topological order.

� Hungarian-A*-cut – a variant of our proposal; an approximation algorithm
that reduces search space, forcing the matched vertices to be at a similar
location in the graph.

7.3. Experiment setup

The datasets are too large to calculate a similarity on each pair. In view of this,
we randomly selected 1000 pairs of graphs for each dataset, and we performed a
comparison for them. However, randomly selected graphs tend to be dissimilar, and
we are more interested to compare graphs that may be similar. To deal with this, we
performed a clustering based on a flattened vector created by summing the vectors
for all vertices. We then selected another 1000 pairs of graphs, comparing only
graphs from the same cluster. Moreover, in practice, an exact GED value can only
be calculated for small graphs, so for our experiments we considered graphs with
at most 20 vertices for randomly selected graphs, and with at most 50 vertices for
graphs selected from the same cluster. We set the cost of deleting the edges at 10,
because small values do not have much impact on the GED value. The maximum
difference in distances between the matched vertices for Hungarian-A*-cut was set
to 2. For each pair of graphs we collected information about the optimal GED,
the value obtained (in the case of the approximation algorithm), the runtime of the
algorithm, and the size of the graphs. We also calculated the level of similarity
between the two graphs as

sim(G1,G2) = 1− GED(G1,G2)

DEL(G1) +DEL(G2)
,

where DEL(G) is a cost of deleting the entire graph G.
We used the jgrapht library [30] to perform the Hungarian algorithm.
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Table 2.: Evaluation of all methods on datasets A, B and C

Method
Dataset A Dataset B Dataset C

cost p time cost p time cost p time
Randomly selected graphs

Hungarian 319 0.11 0.0008 305 0.159 0.0008 393 0.11 0.0008
Hungarian-A* 287 - 5.41 250 - 2.16 352 - 5.62

Hungarian-A*-top 287 - 4.45 250 - 1.08 352 - 3.47
Hungarian-A*-cut 289 0.004 0.024 253 0.007 0.031 356 0.009 0.037

Graphs selected from the same cluster
Hungarian 50.1 0.034 0.0005 111 0.10 0.0005 69.5 0.059 0.0005

Hungarian-A* 3.18 - 22.5 4.57 - 0.182 4.85 - 1.55
Hungarian-A*-top 3.18 - 0.28 4.57 - 0.095 4.85 - 0.75
Hungarian-A*-cut 3.18 0 0.17 4.57 0 0.039 5.49 0.001 0.06

7.4. Results

We compared the average calculated edit distance cost, the time (measured in sec-
onds), and – for the approximation algorithms – the average error of approximation
of the level of similarity between graphs, relative to the true similarity calculated
by exact GED (denoted by p). The evaluation of given datasets for both randomly
selected graphs and for graphs coming from the same cluster is shown in table 2.

The Hungarian algorithm performs one matching in polynomial time and is
therefore unquestionably much faster than the others. However, it does not take into
consideration how the vertices are related to each other. The experimental results
may suggest that it nevertheless obtained a high similarity score, being wrong by
several percentage points. This may be due to the fact that much of the similarity
of the graphs is due to the similarity of the vertices rather than the edges.

TheHungarian-A*-top compared to benchmarkHungarian-A* performs sig-
nificantly faster. On random graphs it is several tens of percent faster, up to about
double for graphs that have a significant chance of being similar. The difference in
performance of these algorithms increases for larger graphs and where the edit dis-
tance is higher. We can see this in the example of dataset A, for graphs coming from
the same cluster, where there were more such pairs, and then the huge advantage of
the Hungarian-A*-top algorithm can be seen there.

The Hungarian-A*-cut is an approximation algorithm that, compared to Hun-
garian-A* or Hungarian-A*-top, searches far fewer vertices and is many times faster.
Still, it finds solutions close to the optimum, and very often finds the optimal graph
edit distance. This can be seen especially in the examples of graphs that are selected
from the same cluster, where in the case of two datasets Hungarian-A*-cut the
optimal solutions were found for all examples. However, this is not very surprising
when we compare to the Hungarian algorithm, which found decent solutions without
any search.

This also shows the specificity of ETL processes. The vast majority of processes
are either very similar or completely different. So if we pre-select the graphs that
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are likely to be similar, it turns out that even a strongly restricted search is usually
enough to find the optimal graph edit distance.

8. Conclusions

Comparing ETL processes is a difficult task, while useful for better management
of the data warehouse. In this paper, we have proposed to use a common graph
model and to compare ETL processes using a method based on edit distance. For
smaller processes it is possible to obtain an exact value, for larger ones one has to
use approximation algorithms. Our proposed modifications have shown that it is
possible to save the running time, taking advantage of the fact that ETL processes
usually do not contain cyclic dependencies.
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[7] Sébastien Bougleux and Luc Brun. Linear Sum Assignment with Edition.
ArXiv, abs/1603.04380, 2016.



23
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