Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Przestrzenne i czasowe zmiany jakości wody w eutroficznym jeziorze ze sztucznym napowietrzaniem
Języki publikacji
Abstrakty
In this work we present novel results concerning water quality changes in an eutrophic water body connected with an artificial aeration system installed in it. Sixty one in-situ and laboratory measurements of biogeochemical variables were recorded monthly between October 2008 and June 2011 to evaluate temporal and spatial changes in San Roque reservoir (Argentina). t-Student mean difference tests, carried out over the whole period, showed with 95% confidence that a monitoring point located at the centre of the water body is representative of the chemical behaviour of the reservoir. Thermal stratification was observed in all sampling sites in the summer, but the frequency of these episodes was markedly lower in bubbling zones. Mean chlorophyll-a concentrations were 58.9 μg∙dm–3 and 117.0 μg∙dm–3 in the absence and in the presence of thermocline respectively. According to the t-Student test, this difference was significant, with p < 0.001. Phosphate release from sediments was corroborated under hypoxia conditions. ANOVA one way analysis did not show significant spatial differences for any variable. Mean normalize spatial index (MENSI) was developed to compare data from different regions affected by high temporal variability. It proved to be useful to quantify spatial differences. Structure analysis of temporal series was used to scrutinize both chemical and spatial association successfully. Three chemically different zones were determined in the reservoir. This study demonstrated that spatial comparisons by means of marginal statistics may not be an adequate method when high temporal variation is present. In such a case, temporal structure analysis has to be considered.
W pracy przedstawiono oryginalne wyniki dotyczące zmian jakości wody w eutroficznym zbiorniku wodnym związanych z zainstalowanym tam systemem sztucznego napowietrzania. Od października 2008 do czerwca 2011 r. dokonywano co miesiąc in situ i w laboratorium 61 pomiarów parametrów biogeochemicznych aby ocenić czasowe i przestrzenne zmiany w zbiorniku San Roque (Argentyna). Testy t-Studenta prowadzone dla całego okresu badawczego wykazały z 95-procentowym poziomem ufności, że stanowisko monitoringu zlokalizowane w centrum zbiornika wodnego jest reprezentatywne dla właściwości chemicznych całego zbiornika. Stratyfikację termiczną obserwowano latem we wszystkich stanowiskach badawczych, ale częstość wystąpień tych epizodów była znacząco mniejsza w strefie napowietrzania. Średnie stężenie chlorofilu a wynosiło 58,9 μg∙dm–3 i 117,0 μg∙dm–3 odpowiednio w warunkach braku i w warunkach występowaniu termokliny. Różnica wg testu t-Studenta była statystycznie istotna, gdy p < 0,001. Stwierdzono uwalnianie fosforanów z osadów w warunkach deficytu tlenowego. Jednoczynnikowa analiza ANOVA nie wykazała istotnego zróżnicowania przestrzennego żadnego z mierzonych parametrów. Utworzono średni znormalizowany indeks przestrzenny (MENSI) do porównania danych cechujących się dużą zmiennością czasową pochodzących z różnych regionów. Indeks okazał się użyteczny do ilościowego przedstawienia różnic przestrzennych. Przeprowadzono analizę struktury szeregów czasowych, aby przeanalizować powiązanie cech chemicznych ze zmiennością przestrzenną. Wyodrębniono trzy chemicznie odmienne strefy zbiornika. Badania wykazały, że analiza przestrzenna za pomocą statystyki jednoczynnikowej może nie być odpowiednią metodą w warunkach dużej zmienności czasowej. W takim przypadku należy rozważyć analizę struktury czasowej.
Wydawca
Czasopismo
Rocznik
Tom
Strony
27--40
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- National University of Córdoba and CONAE, Institute of Higher Space Studies Mario Gulich, Ruta C45, km 8, Falda del Carmen, 5587, Córdoba, Argentina
autor
- Physical Chemistry Department, Faculty of Chemical Sciences, INFICQ-CONICET, Haya de la Torre esq. Medina Allende, CP 5000, Córdoba, Argentina
autor
- Federal University of Alagoas, Laboratory of Scientific Computation and Numerical Analysis, Av. Lourival Melo Mota s/n. Maceio 57072-900 AL, Brazil
autor
- Water Resources Secretary of Córdoba Province, Hydrology Department, Humerto Primo 607, CP 5000, Córdoba, Argentina
autor
- Water Resources Secretary of Córdoba Province, Hydrology Department, Humerto Primo 607, CP 5000, Córdoba, Argentina
autor
- Water Resources Secretary of Córdoba Province, Hydrology Department, Humerto Primo 607, CP 5000, Córdoba, Argentina
autor
- National University of Córdoba and CONAE, Institute of Higher Space Studies Mario Gulich, Ruta C45, km 8, Falda del Carmen, 5587, Córdoba, Argentina
Bibliografia
- AJEAGAH G.A., ABANDA W.V.B., NKENG G.E. 2017. An application of a water assessment and simulation model in the remediation of the eutrophication capacity of a tropical water system: Case study the Lake Obili in Yaounde (Cameroon). Journal of Water and Land Development. No. 33 p. 11–22. DOI 10.1515/jwld-2017-0014.
- ALENCAR A.B., PAULOVICH F.V., MINGHIM R., FILHO M., OLIVEIRA M. 2008. Similarity-based visualization of time series collections: An application to analysis of streamflows. Information Visualisation. 08.04.2008IV'08. 12th International Conference. London, UK. 9–11 July 2008.
- ALEXANDER R., IMBERGER J. 2009. Spatial distribution of motile phytoplankton in a stratified reservoir: The physical controls on patch formation. Journal of Plankton Research. Vol. 31. Iss. 1 p. 101–118.
- AMÉ M.V., DEL PILAR DÍAZ M., WUNDERLIN D.A. 2003. Occurrence of toxic cyanobacterial blooms in San Roque reservoir (Córdoba, Argentina): A field and chemometric study. Environmental Toxicology. Vol. 18. Iss. 3 p. 192–201.
- ANTENUCCI J.P., ALEXANDER R., ROMERO J.R., IMBERGER J. 2003. Management strategies for a eutrophic water supply reservoir – San Roque, Argentina. Water Science and Technology. Vol. 47. Iss. 7–8 p. 149–155.
- BORGNINO L., AVENA M., DE PAULI C. 2006. Surface properties of sediments from two Argentinean reservoirs and the rate of phosphate release. Water Research. Vol. 40. Iss. 14 p. 2659–2666.
- CARLSON R.E. 1977. A trophic state index for lakes. Limnology and Oceanography. Vol. 22. Iss. 2 p. 361–369.
- DAVISON W., WOOF C. 1984. A study of the cycling of manganese and other elements in a seasonally anoxic lake, Rostherne Mere, UK. Water Research. Vol. 18. Iss. 6 p. 727–734.
- DOUGLAS G.B., HAMILTON D.P., ROBB M.S., PAN G., SPEARS B.M., LURLING M. 2016. Guiding principles for the development and application of solid-phase phosphorus adsorbents for freshwater ecosystems. Aquatic Ecology. Vol. 50. Iss. 3 p. 385–405.
- EATON A.D., CLESCERI L.S., GREENBERG A.E. (eds.) 2005. Standard methods for the examination of water and wastewater. 21st ed. Washington, DC. American Public Health Association, American Water Works Association, Water Environment Federation. ISBN 978-0875530475 pp. 1200.
- FERNANDEZ R., BONANSEA M., COSAVELLA A., MONARDE F., FERREYRA M., BRESCIANO J. 2012. Effects of bubbling operations on a thermally stratified reservoir: Implications for water quality amelioration. Water Science and Technology. Vol. 66. Iss. 12 p. 2722–2730.
- FRIENDLY M. 2002. Corrgrams: Exploratory displays for correlation matrices. The American Statistician. Vol. 56. Iss. 4 p. 316–324.
- GÄCHTER R., WEHRLI B. 1998. Ten years of artificial mixing and oxygenation: no effect on the internal phosphorus loading of two eutrophic lakes. Environmental Science and Technology. Vol. 32. Iss. 23 p. 3659–3665.
- GRANERO M., BUSTAMANTE A., LÓPEZ F., RUIZ M. 2004. Hipolimnion water quality and its relationship to internal P loading in an eutrophicated water body: San Roque reservoir (Córdoba, Argentina). Journal of Hydraulic Research. Vol. 42. Iss. 3 p. 310–315.
- GROMIEC M., GROMIEC T. 2010. Controlling of eutrophication in aquatic environments. Journal of Water and Land Development. Vol. 14 p. 29–35.
- HAMILTON D.P., SALMASO N., PAERL H.W. 2016. Mitigating harmful cyanobacterial blooms: strategies for control of nitrogen and phosphorus loads. Aquatic Ecology. Vol. 50. Iss. 3 p. 351–366.
- ILNICKI P. 2014. Emissions of nitrogen and phosphorus intorivers from agricultural land – selected controversial issues. Journal of Water and Land Development. No. 23 p. 31–40. DOI 10.1515/jwld-2014-0027.
- IMTEAZ M.A., ASAEDA T. 2000. Artificial mixing of lake water by bubble plume and effects of bubbling operations on algal bloom. Water Research. Vol. 34. Iss. 6 p. 1919–1929.
- LAWSON R., ANDERSON M.A. 2007. Stratification and mixing in Lake Elsinore, California: An assessment of axial flow pumps for improving water quality in a shallow eutrophic lake. Water Research. Vol. 41. Iss. 19 p. 4457–4467.
- LOVLEY D.R., PHILLIPS E.J. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmental Microbiology. Vol. 54. Iss. 6 p. 1472–1480.
- MOORE S.K., TRAINER V.L., MANTUA N.J., PARKER M.S., LAWS E.A., BACKER L.C., FLEMING L.E. 2008. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environmental Health. Vol. 7. Iss. 2 S4.
- MORTIMER C.H. 1942. The exchange of dissolved substances between mud and water in lakes. The Journal of Ecology. Vol. 30. No. 1 p. 147–201.
- NICKLISCH A., SHATWELL T., KÖHLER J. 2008. Analysis and modelling of the interactive effects of temperature and light on phytoplankton growth and relevance for the spring bloom. Journal of Plankton Research. Vol. 30. Iss. 1 p. 75–91.
- NIMICK D.A., GAMMONS C.H., PARKER S.R. 2011. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review. Chemical Geology. Vol. 283. Iss. 1 p. 3–17.
- PAERL H.W., PAUL V.J. 2012. Climate change: links to global expansion of harmful cyanobacteria. Water Research. Vol. 46. Iss. 5 p. 1349–1363.
- PARINET J., RODRIGUEZ M.J., SÉRODES J. 2010. Influence of water quality on the presence of off-flavour compounds (geosmin and 2-methylisoborneol). Water Research. Vol. 44. Iss. 20 p. 5847–5856.
- R Development Core Team 2013. R: A language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing.
- ROLLAND A., BERTRAND F., MAUMY M., JACQUET S. 2009. Assessing phytoplankton structure and spatio-temporal dynamics in a freshwater ecosystem using a powerful multiway statistical analysis. Water Research. Vol. 43. Iss. 13 p. 3155–3168.
- RUIZ M., GALANTI L., RUIBAL A.L., RODRIGUEZ M.I., WUNDERLIN D.A., AMÉ M.V. 2013. First report of microcystins and anatoxin-a co-occurrence in San Roque reservoir (Córdoba, Argentina). Water, Air, and Soil Pollution. Vol. 224. Iss. 6 p. 1–17.
- STEINMAN A.D., ISELY E.S., THOMPSON K. 2015. Stormwater runoff to an impaired lake: impacts and solutions. Environmental Monitoring and Assessment. Vol. 187. Iss. 9, 549 pp. 14.
- STITZ L., KINNEAR S., FABBRO L. 2013. A role for aeration and intake depth in managing toxic Cylindrospermopsis: A comparison between off‐stream and riverine environments in the Fitzroy Basin, Australia. Lakes and Reservoirs: Research and Management. Vol. 18. Iss. 2 p. 179–196.
- STUMM W., MORGAN J.J. 2012. Aquatic chemistry: chemical equilibria and rates in natural waters. Vol. 126. John Wiley and Sons. ISBN 9781118591482 pp. 1040.
- VAN PUIJENBROEK P., CLEIJ P., VISSER H. 2014. Aggregated indices for trends in eutrophication of different types of fresh water in the Netherlands. Ecological Indicators. Vol. 36 p. 456–462.
- VISSER P.M., PASSARGE J., MUR L.R. 1997. Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia. Vol. 349. Iss. 1–3 p. 99–109.
- VONLANTHEN P., BITTNER D., HUDSON A., YOUNG K., MÜLLER R., LUNDSGAARD-HANSEN B., ROY D., DI PIAZZA S., LARGIADER C.R., SEEHAUSEN O. 2012. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature. Vol. 482. Iss. 7385 p. 357–362.
- ZHOU A., TANG H., WANG D. 2005. Phosphorus adsorption on natural sediments: Modeling and effects of pH and sediment composition. Water Research. Vol. 39. Iss. 7 p. 1245–1254.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8dce420-c374-466b-8cdf-822f566a81ca