PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of adding furnace ash from bituminous coal combustion to soil on phytoavailability of selected metals

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ dodatku popiołu paleniskowego z węgla kamiennego do gleby na fitoprzyswajalność wybranych metali
Języki publikacji
EN
Abstrakty
EN
The research on the effect of furnace ash from bituminous coal combustion on the uptake of Cr, Cu, Ni, Fe, Mn, Al by maize (Zea mays L.) was conducted under conditions of a three-year pot experiment. The arable soil in the pot experiment was amended with furnace ash in the amount of 23.33 g·pot‒1 (corresponding to 20 t·ha‒1) and with increasing doses of cadmium (3÷15 mg·kg‒1 soil DM). Application of ash and cadmium in the amount of 3÷5 mg·kg‒1 DM to the soil had a significant effect on the increase in the yield of above-ground parts and roots of maize. Application of subsequent doses of cadmium (7.5÷15 mg·kg‒1) caused a considerable reduction in the yield of the tested plant. The research shows that the applied furnace ash reduced the depression in yielding of maize. Introduction of furnace ash to cadmium-contaminated soil caused an increase in the content of Cr, Fe, Ni, Cu and Al in maize biomass and a decrease in the content of Mn in maize. Among the studied metals, Mn was translocated from roots to above-ground parts the most efficiently, and Al - the least efficiently, evidence of which are the highest values of the translocation factor for Mn, and the lowest values for Al. The research showed that ash introduced to cadmium-contaminated soil did not immobilize the above-mentioned metals, and thereby did not reduce the phytoavailability. In general, contamination of the soil with cadmium and introduction of ash stimulated uptake of the metals by maize. We observed that roots took up more Cr, Fe, Ni and Al, whereas above-ground parts of maize took up more Mn and Cu. The lowest uptake of the studied metals by maize was observed in the treatment where only furnace ash was applied.
PL
Badania nad wpływem popiołu paleniskowego z węgla kamiennego na pobieranie Cr, Cu, Ni, Fe, Mn, Al przez kukurydzę (Zea mays L.) przeprowadzono w warunkach trzyletniego doświadczenia wazonowego. W doświadczeniu wazonowym zastosowano do gleby uprawnej popiół paleniskowy, w ilości 23,33 g·wazon‒1, odpowiadającej 20 t·ha‒1, oraz wzrastające dawki kadmu, w ilości 3÷15 mg·kg‒1 s.m. gleby. Zastosowanie popiołu oraz kadmu w ilości 3÷5 mg·kg‒1 s.m. do gleby wpłynęło istotnie na zwiększenie plonu części nadziemnych i korzeni kukurydzy. Natomiast zaaplikowanie kolejnych dawek kadmu (7,5÷15 mg·kg‒1) spowodowało istotne obniżenie plonu testowanej rośliny. Z badań wynika, że zaaplikowany popiół paleniskowy zmniejszył depresję plonowania kukurydzy. Wprowadzenie popiołu paleniskowego do gleby zanieczyszczonej kadmem wpłynęło na zwiększenie zawartości Cr, Fe, Ni, Cu i Al w biomasie kukurydzy, natomiast wpłynęło na zmniejszenie zawartości Mn w kukurydzy. Spośród badanych metali najłatwiej był przemieszczany z korzeni do części nadziemnych Mn, a najsłabiej Al, o czym świadczą największe wartości współczynnika translokacji dla Mn, a najmniejsze wartości dla Al. Z badań wynika, że popiół wprowadzony do gleby zanieczyszczonej kadmem nie wpłynął na immobilizację wyżej wymienionych metali, a tym samym nie ograniczył fitoprzyswajalności. Generalnie zanieczyszczenie gleby kadmem i wprowadzenie popiołu stymulowało pobieranie metali przez kukurydzę. Stwierdzono większe pobranie Cr, Fe, Ni i Al przez korzenie, natomiast Mn i Cu przez części nadziemne kukurydzy. Najmniejsze pobranie badanych metali przez kukurydzę zarejestrowano w obiekcie, w którym zastosowano wyłącznie popiół paleniskowy.
Rocznik
Strony
405--422
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
  • University of Agriculture in Krakow, Department of Agricultural and Environmental Chemistry, Av. Mickiewicz Adam 21, 31-120 Krakow
autor
  • University of Agriculture in Krakow, Department of Agricultural and Environmental Chemistry, Av. Mickiewicz Adam 21, 31-120 Krakow
autor
  • University of Agriculture in Krakow, Department of Agricultural and Environmental Chemistry, Av. Mickiewicz Adam 21, 31-120 Krakow
  • University of Agriculture in Krakow, Department of Agricultural and Environmental Chemistry, Av. Mickiewicz Adam 21, 31-120 Krakow
autor
  • University of Agriculture in Krakow, Department of Agricultural and Environmental Chemistry, Av. Mickiewicz Adam 21, 31-120 Krakow
autor
  • Department of Environmentalistics and Natural Resources, Mendel University in Brno, Faculty of Regional Development and International Studies, Zemědělská 1, 613 00 Brno, Czech Republic
autor
  • Department of Environmentalistics and Natural Resources, Mendel University in Brno, Faculty of Regional Development and International Studies, Zemědělská 1, 613 00 Brno, Czech Republic
Bibliografia
  • [1] Amrhein C., Haghnia G.H., Kim T.S., Mosher P.A., Gagajena R.C., Amanios T., Torre L., Synthesis and properties of zeolites from coal fly ash, Environmental Science & Technology 1996, 30, 3, 735-742.
  • [2] Bukhari S.S., Behin J., Kazemian K., Rohani S., Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: A review, Fuell 2015, 40, 250-266.
  • [3] Pither S.K., Slade R.C.T., Ward N.I., Heavy metal removal from motorway stormwater using zeolites, Science of the Total Environment 2004, 334-335, 161-166.
  • [4] Seshadri B., Bolan N.S., Naidu R., Brodie K., The role of coal combustion products in managing the bioavailability of nutrients and heavy metals in soils, Journal of Soil Science Plant Nutrition 2010, 10, 3, 378-398.
  • [5] Regulation MACD, Regulation of the Minister of Agricultural and Countryside Development dated 18 June 2008 concerning the implementation of certain provisions of the Act on Fertilizers and Fertilization, Journal of Laws of Poland, No 119, Item 765.
  • [6] Regulation MACD, Regulation of the Minister of Agricultural and Countryside Development dated 21 December 2009 amending regulation concerning the implementation of certain provisions of the Act on Fertilizers and Fertilization, Journal of Laws of Poland, No 224, Item 1804.
  • [7] Antonkiewicz J., Lošák T., The effect of hard coal ashes on the amount and quality of maize yield. Part 1. Heavy metals, Acta Univ. Agric. et Silviculturae Mendelianae Brunensis 2007, LV, 1, 1, 7-15.
  • [8] Antonkiewicz J., Lošák T., The effect of hard coal ashes on the quality of maize yield. Part 2. Microelements, Acta Univ. Agric. et Silviculturae Mendelianae Brunensis 2007, LV, 1, 5, 9-16.
  • [9] Lee H., Ha H.S., Lee C.H., Lee Y.B., Kim P.J., Fly ash effect on improving soil properties and rice productivity in Korean paddy soils, Bioresource Technology 2006, 97, 1490-1497.
  • [10] Rautaray S.K., Ghosg B.C., Mittra B.N., Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice-mustard cropping sequence under acid lateritic soils, Bioresource Technology 2003, 90, 275-283.
  • [11] Regulation ME, Regulation of the Minister of the Natural Environment on landfill site dated 30 April 2013, Journal of Laws of Poland, No 0, Item 523.
  • [12] Mazur J., Konieczyński J., Distribution of trace elements in granulometric fractions of fly-ash emitted from power stations, Monograph, Silesian University of Technology, Gliwice 2004.
  • [13] Tu C., Zheng C.R., Chen H.M., Effect of applying chemical fertilizers on forms of lead and cadmium in red soil, Chemosphere 2000, 41, 133-138.
  • [14] Wu S., Xu Y., Sun J., Cao Z., Zhou J., Pan Y., Qian G., Inhibiting evaporation of heavy metal by controlling its chemical speciation in MSWI fly ash, Fuel 2015, 158, 764-769.
  • [15] Polish Soil Classification, Soil Science Annual 2011, 62, 3, 1-193.
  • [16] Kabata-Pendias A., Piotrowska M., Motowicka-Terelak T., Maliszewska-Kordybach T., Filipiak K., Krakowiak A., Pietruch C., Basis for the assessment of chemical contamination of soil - heavy metals, sulfur and PAHs, State Inspectorate for Environmental Protection, Library of Environmental Monitoring, Warsaw 1995.
  • [17] Catalog of wastes, Regulation of the Minister of the Natural Environment on catalog of wastes dated 9 December 2014, Journal of Laws of Poland, Item 1923.
  • [18] Regulation ME, Regulation of the Minister of the Natural Environment on soil quality and earth quality dated 9 September 2002, Journal of Laws of Poland, No 165, Item 1359.
  • [19] Sharma A., Sachdeva S., Cadmium toxicity and its phytoremediation: A review. International Journal of Scientific and Engineering Research 2015, 6, 9, 395-405.
  • [20] Kim R.Y., Yoon J.K., Kim T.S., Yang J.E., Owens G., Kim K.R., Bioavailability of heavy metals in soils: definitions and practical implementation – a critical review, Environmental Geochemistry Health 2015, 37, 1041-1061.
  • [21] Audet P., Charest C., Heavy metal phytoremediation from a meta-analytical perspective, Environmental Pollution 2007, 147, 231-237.
  • [22] Wilkins D.A., The measurement of tolerance to edaphic factors by means of root growth, New Phytologist 1978, 80, 3, 623-633.
  • [23] Park J.H., Lamb D., Paneerselvam P., Choppala G., Bolan N., Chung J-W., Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils, Journal of Hazardous Materials 2011, 185, 549-574.
  • [24] Chaudhary D.R., Ghosh A., Bioaccumulation of nutrient elements from fly ash-amended soil in Jatropha curcas L.: A biofuel crop, Environ Monit Assess 2013, 185, 6705-6712.
  • [25] Yao Z.T., Ji X.S., Sarker P.K., Tang J.H., Ge L.Q., Xia M.S., Xi Y.Q., A comprehensive review on the applications of coal fly ash, Earth-Science Reviews 2015, 141, 105-121.
  • [26] Bahranowski K., Górniak K., Ratajczak T., Sikora W.S., Szydłak T., Wyszomirski P., Wymywalność niektórych pierwiastków głównych i śladowych z zawiesiny wodnej popiołów lotnych, Wyd. Polskie Towarzystwo Mineralogiczne, Prace specjalne, 1999, 13, 35-41.
  • [27] Chang C.Y., Wang C.F., Mui D.T., Chiang H.L., Application of methods (sequential extraction procedures and high-pressure digestion method) to fly ash particles to determine the element constituents: A case study for BCR 176, Journal of Hazardous Materials 2009, 163, 578-587.
  • [28] Gupta D.K., Rai U.N., Tripathi R.D., Inouhe M., Impacts of fly-ash on soil and plant responses, Journal of Plant Research 2002, 115, 401-409.
  • [29] Finkelman R.B., What we don’t know about the occurrence and distribution of trace elements in coal, Journal of Coal Quality 1989, 8, 3-4, 63.
  • [30] Act on Fertilizers and Fertilization 2007, Journal of Laws of Poland, No 147, Item 1033.
  • [31] Lu Y., Li X., He M., Zhao X., Liu Y., Cui Y., Pan Y., Tan H., Seedlings growth and antioxidative enzymes activities in leaves under heavy metal stress differ between two desert plants: a perennial (Peganum harmala) and an annual (Halogeton glomeratus) grass, Acta Physiologiae Plantarum 2010, 32, 583-590.
  • [32] Przedpełska-Wąsowicz E., Polatajko A., Wierzbicka M., The influence of cadmium stress on the content of mineral nutrients and metal binding proteins in Arabidopsis halleri, Water, Air and Soil Pollution 2012, 223, 5445-5458.
  • [33] Stanisławska-Glubiak E., Korzeniowska J., Kocon A., Effect of peat on the accumulation and translocation of heavy metals by maize grown in contaminated soils, Environmental Science and Pollution Research 2015, 22, 4706-4714.
  • [34] Guo X.F., Wei Z.B., Wu Q.T., Qiu J.R., Zhou J.L., Cadmium and zinc accumulation in maize grain as affected by cultivars and chemical fixation amendments, Pedosphere 2011, 21(5), 650- -656.
  • [35] Jabeen R., Ahmad A., Iqbal M., Phytoremediation of heavy metals: physiological and molecular mechanisms, Botanical Review 2009, 75, 339-364.
  • [36] Antonkiewicz J., Para A., The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals, International Journal of Phytoremediation 2016, 18, 3, 245-250.
  • [37] Gondek K., Akumulacja metali ciężkich w owsie nawożonym kompostami, Acta Agrophysica 2007, 10, 1, 89-102.
  • [38] Korzeniowska J., Stanisławska-Glubiak E., Phytoremediation potential of Miscanthus x giganteus and Spartina pectinata in soil contaminated with heavy metals, Environmental Science and Pollution Research 2015, 22, 15, 11648-11657.
  • [39] Ratajczak T., Gaweł A., Górniak K., Muszyński M., Szydlak T., Wyszomirski P., Charakterystyka popiołów lotnych ze spalania niektórych węgli kamiennych i brunatnych, Wyd. Polskie Towarzystwo Mineralogiczne, Prace specjalne 1999, 13, 9-34.
  • [40] Xu X., Zhu W., Wang Z., Witkamp G.J., Distributions of rare earths and heavy metals in fieldgrown maize after application of rare earth-containing fertilizer, The Science of the Total Environment 2002, 293, 97-105.
  • [41] Song X., Hu X., Ji P., Li Y., Chi G., Song Y., Phytoremediation of cadmium-contaminated farmland soil by the hyperaccumulator Beta vulgaris L. var. cicla, Bulletin of Environmental Contamination and Toxicology 2012, 88, 623-626.
  • [42] Klimont K., Rekultywacyjna efektywność osadów ściekowych na bezglebowym podłożu wapna poflotacyjnego i popiołów paleniskowych, Problemy Inżynierii Rolniczej 2011, 2/2011, 165- -176.
  • [43] Page K., Harbottle M.J., Cleall P.J., Hutchings T.R., Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate, Science of the Total Environment 2014, 487, 260-271.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8d96c8a-96bb-4d9e-9c5d-33cf90776e5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.