PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of microalgal sourced biodiesel to help underground mines transition to battery electric vehicles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of fossil fuel sourced diesel underground has various associated health and environmental hazards, and additional energy demand and costs associated with necessary ventilation. One way to reduce these impacts is by utilizing a biodiesel-blend, which generates lower levels of harmful emissions from underground equipment and can be produced regionally, reducing the impact of transportation. Furthermore, this would help allow use of existing machinery during transition towards more widespread electrification underground. Therefore, the concept of an integrated supply and use chain within the mining industry is examined based on biodiesel from acidophilic photosynthetic microalgae cultivated using CO 2 in smelter off-gas. A life cycle assessment (LCA) was conducted to compare the environmental impacts of production, transportation, and end-use of fossil fuel sourced diesel to biodiesel-blended fuel across four underground metal ore mine sites (Canada, Poland, Zambia, and Australia). The outcomes from assessing four key environmental impact potentials (global warming, eutrophication, acidification and human toxicity) demonstrate the advantages of using biodiesel-blends. The integration of biodiesel resulted in changes of -22.5 to +22.8% (global warming), -6.1 to +27.3% (eutrophication), -18.9 to +26.3% (acidification), and -21.0 to -3.6% (human toxicity). The results showed reduction across all potentials for two mines and reduction in human toxicity potential for all sites.
Rocznik
Strony
2--14
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
  • Laurentian University, Bharti School of Engineering, Canada
autor
  • Laurentian University, Bharti School of Engineering, Canada
  • Laurentian University, Bharti School of Engineering, Canada
  • Laurentian University, Bharti School of Engineering, Canada
  • Laurentian University, Bharti School of Engineering, Canada
Bibliografia
  • [1] Gorman MR, Dzombak DA. A review of sustainable mining and resource management: transitioning from the life cycle of the mine to the life cycle of the mineral. Resour Conserv Recycl 2018;137:281-91. https://doi.org/10.1016/j.resconrec.2018.06.001.
  • [2] Ranängen H, Lindman A. A path towards sustainability for the Nordic mining industry. J Clean Prod 2017;151:43-52. https://doi.org/10.1016/j.jclepro.2017.03.047.
  • [3] International Council on Mining & Metals. ICMM 10 principles. https://www.icmm.com/en-gb/about-us/member-requirements/mining-principles. [Accessed 24 August 2021].
  • [4] Farjana SH, Huda N, Mahmud MAP, Saidur R. A review on the impact of mining and mineral processing industries through life cycle assessment. J Clean Prod 2019;231: 1200-17. https://doi.org/10.1016/j.jclepro.2019.05.264.
  • [5] Tost M, Hitch M, Chandurkar V, Moser P, Feiel S. The state of environmental sustainability considerations in mining. J Clean Prod 2018;182:969-77. https://doi.org/10.1016/ j.jclepro.2018.02.051.
  • [6] Paraszczak J, Svedlund E, Fytas K, Laflamme M. Electrification of loaders and trucks - a step towards more sustainable underground mining. Renewable Energy Power Qual J 2014: 81-6. https://doi.org/10.24084/repqj12.240.
  • [7] Jacobs W, Hodkiewicz MR, Bräunl T. A costebenefit analysis of electric loaders to reduce diesel emissions in underground hard rock mines. IEEE Transactions Ind Appl 2015;51: 2565-73. https://doi.org/10.1109/TIA.2014.2372046.
  • [8] Gönen A. Ventilation requirements for today's mechanized underground metal mines. Int J Adv Res Eng 2018;4:7-10. https://doi.org/10.24178/ijare.2018.4.1.07.
  • [9] Reşitolu İA, Altinişik K, Keskin A. The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Technol Environ Pol 2015;17:15-27. https://doi.org/10.1007/s10098-014-0793-9.
  • [10] Moreau K, Bose R, Shang H, Scott JA. Automation technology to increase productivity and reduce energy consumption in deep underground mining operations. Comer Ind Madera (CIM) J 2019;10:115-24.
  • [11] Moreau K, Laamanen CA, Bose R, Shang H, Scott JA. Life cycle assessment to demonstrate how automation improves the environmental performance of an underground mining operation. J Sustainable Min 2020;19:182-94. https://doi.org/10.46873/2300-3960.1016.
  • [12] Nieto A, Schatz RS, Dogruoz C. Performance analysis of electric and diesel equipment for battery replacement of tethered LHD vehicles in underground mining. Min Technol 2020;129:22-9. https://doi.org/10.1080/25726668.2020.1720371.
  • [13] Schatz RS, Nieto A, Lvov SN. Long-term economic sensitivity analysis of light duty underground mining vehicles by power source. Int J Min Sci Technol 2017;27:567-71. https://doi.org/10.1016/j.ijmst.2017.03.016.
  • [14] Aaldering LJ, Song CH. Tracing the technological development trajectory in post-lithium-ion battery technologies: a patent-based approach. J Cleaner Prod 2019;241:118343. https://doi.org/10.1016/j.jclepro.2019.118343.
  • [15] Schatz RS, Nieto A, Dogruoz C, Lvov SN. Using modern battery systems in light duty mining vehicles. Int J Min Reclam Environ 2015;25:243-65. https://doi.org/10.1080/17480930.2013.866797.
  • [16] de la Vergne JN. Hard rock miner's handbook. 5th ed. Stantec Consulting; 2008.
  • [17] Lutz EA, Reed RJ, Lee VST, Burgess JL. Comparison of personal diesel and biodiesel exhaust exposures in an underground mine. J Occup Environ Hyg 2017;14:102-9. https://doi.org/10.1080/15459624.2017.1285488.
  • [18] Bugarski AD, Janisko SJ, Cauda EG, Patts LD, Hummer JA, Westover C, et al. Aerosols and criteria gases in an underground mine that uses FAME biodiesel blends. Ann Occup Hyg 2014;58:971-82. https://doi.org/10.1093/annhyg/meu049.
  • [19] Ben-Iwo J, Manovic V, Longhurst P. Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew Sustain Energy Rev 2016;63:172-92. https://doi.org/10.1016/j.rser.2016.05.050.
  • [20] Wolinetz M, Hein M, Moawad B. Biofuels in Canada 2019 - tracking biofuel consumption, feedstocks and avoided greenhouse gas emissions. 2019.
  • [21] Gouveia L, Oliveira AC. Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 2009;36: 269-74. https://doi.org/10.1007/s10295-008-0495-6.
  • [22] Islam MA, Heimann K, Brown RJ. Microalgae biodiesel: current status and future needs for engine performance and emissions. Renewable Sustainable Energy Rev 2017;79: 1160-70. https://doi.org/10.1016/j.rser.2017.05.041.
  • [23] Khalife E, Tabatabaei M, Demirbas A, Aghbashlo M. Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Prog Energy Combust Sci 2017;59:32-78. https://doi.org/10.1016/j.pecs.2016.10.001.
  • [24] Singh D, Subramanian K, Juneja M, Singh K, Singh S, Badola R, et al. Investigating the effect of fuel cetane number, oxygen content, fuel density, and engine operating variables on NOx emissions of a heavy duty diesel engine. Environ Prog Sustainable Energy 2017;36:214-21. https://doi.org/10.1002/ep.12439.
  • [25] Islam MA, Rahman MM, Heimann K, Nabi MN, Ristovski ZD, Dowell A, et al. Combustion analysis of microalgae methyl ester in a common rail direct injection diesel engine. Fuel 2015;143:351-60. https://doi.org/10.1016/j.fuel.2014.11.063.
  • [26] Hossain FM, Nabi MN, Rainey TJ, Bodisco T, Rahman MM, Suara K, et al. Investigation of microalgae HTL fuel effects on diesel engine performance and exhaust emissions using surrogate fuels. Energy Convers Manage 2017;152:186-200. https://doi.org/10.1016/j.enconman.2017.09.016.
  • [27] Al-lwayzy SH, Yusaf T. Diesel engine performance and exhaust gas emissions using microalgae Chlorella protothecoides biodiesel. Renewable Energy 2017;101:690-701. https://doi.org/10.1016/j.renene.2016.09.035.
  • [28] Lardon L, Helias A, Sialve B, Steyer JP, Bernard O. Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 2009;43:6475-81. https://doi.org/10.1021/es900705j.
  • [29] Chungjatupornchai W, Areerat K, Fa-Aroonsawat S. Increased triacylglycerol production in oleaginous microalga Neochloris oleoabundans by overexpression of plastidial lysophosphatidic acid acyltransferase. Microb Cell Fact 2019;18: 53. https://doi.org/10.1186/s12934-019-1104-2.
  • [30] Desjardins SM, Laamanen CA, Basiliko N, Scott JA. Utilization of lipid-extracted biomass (LEB) to improve the economic feasibility of biodiesel production from green microalgae. Environ Rev 2020;28:325-38. https://doi.org/10.1139/er-2020-0004.
  • [31] Seyed Hosseini N, Shang H, Ross GM, Scott JA. Comparative analysis of top-lit bubble column and gas-lift bioreactors for microalgae-sourced biodiesel production. Energy Convers Manage 2016;130:230-9. https://doi.org/10.1016/j.enconman.2016.10.048.
  • [32] Mohler D, Wilson MH, Kesner S, Schambach JY, Vaughan D, Frazar M, et al. Beneficial re-use of industrial CO2 emissions using microalgae: demonstration assessment and biomass characterization. Bioresour Technol 2019;293:122014. https://doi.org/10.1016/j.biortech.2019.122014.
  • [33] Laamanen CA, Shang H, Ross GM, Scott JA. A model for utilizing industrial off-gas to support microalgae cultivation for biodiesel in cold climates. Energy Convers Manage 2014;88:476-83. https://doi.org/10.1016/j.enconman.2014.08.047.
  • [34] Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renewable Sustainable Energy Rev 2010;14:217-32. https://doi.org/10.1016/j.rser.2009.07.020.
  • [35] Maity JP, Bundschuh J, Chen CY, Bhattacharya P. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives - A mini review. Energy 2014;78: 104-13. https://doi.org/10.1016/j.energy.2014.04.003.
  • [36] Lee KM, Inaba A. Life cycle assessment: best practices of ISO 14040 series. Ministry of Commerce, Industry and Energy, Republic of Korea; 2004.
  • [37] Stranddorf HK, Hoffmann L, Schmidt A. Impact categories, normalization and weighting in LCA. Environ News 2005;78.
  • [38] Aslam A, Thomas-Hall SR, Mughal TA, Schenk PM. Selection and adaptation of microalgae to growth in 100% unfiltered coal-fired flue gas. Bioresour Technol 2017;233:271-83. https://doi.org/10.1016/j.biortech.2017.02.111.
  • [39] Lara-Gil JA, Senés-Guerrero C, Pacheco A. Cement flue gas as a potential source of nutrients during CO2 mitigation by microalgae. Algal Res 2016;17:285-92. https://doi.org/10.1016/j.algal.2016.05.017.
  • [40] Shang H, Scott JA, Shepherd SH, Ross GM. A dynamic thermal model for heating microalgae incubator ponds using off-gas. Chemical Engineering Science 2010;65:4591-7. https://doi.org/10.1016/j.ces.2010.04.042.
  • [41] National Energy Board. Canada's renewable power landscape 2017 - energy market analysis. 2017. Retrieved from, https://www.cer-rec.gc.ca/nrg/sttstc/lctrct/rprt/2017cndrnwblpwr/index-eng.html.
  • [42] Department of Planning, Industry, and Environment. NSW electricity strategy. 2019. Retrieved from: https://energy.nsw.gov.au/media/1921/download.
  • [43] U.S Agency for International Development (USAID). Zambia - power Africa fact sheet. 2020. Retrieved from, https://www.usaid.gov/powerafrica/zambia.
  • [44] U.S Energy Information Administration (EIA. Poland - independent statistics and analysis. 2020. Retrieved from, https://www.eia.gov/international/analysis/country/POL.
  • [45] Seyed Hosseini N, Shang H, Ross GM, Scott JA. Microalgae cultivation in a novel top-lit gas-lift open bioreactor. Bioresour Technol 2015;192:432-40. https://doi.org/10.1016/j.biortech.2015.05.092.
  • [46] Laamanen CA, Shang H, Ross G, Scott JA. Smelter off-gas waste heat and carbon dioxide sequestration to promote production of biodiesel. Comer Ind Madera (CIM) J 2017;8: 1-12. https://doi.org/10.15834/cimj.2017.11.
  • [47] Seyed Hosseini N, Shang H, Scott JA. Optimization of microalgae-sourced lipids production for biodiesel in a top-lit gas-lift bioreactor using response surface methodology. Energy 2018; 146:47-58. https://doi.org/10.1016/j.energy.2017.08.085.
  • [48] Seyed Hosseini N, Shang H, Scott JA. Increasing microalgal lipid productivity for conversion into biodiesel by using a non-energy consuming light guide. Biochem Eng J 2018;134: 60-8. https://doi.org/10.1016/j.bej.2018.03.006.
  • [49] Chinnasamy S, Bhatnagar A, Hunt RW, Das KC. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 2010; 101:3097-105. https://doi.org/10.1016/j.biortech.2009.12.026.
  • [50] Acién Fernández FG, Fernández Sevilla JM, Molina Grima E. Photobioreactors for the production of microalgae. Rev Envriron Sci Biotechnol 2013;12:131-51. https://doi.org/10.1007/s11157-012-9307-6.
  • [51] Laamanen CA, Desjardins SM, Senhorinho GNA, Scott JA. Harvesting microalgae for health beneficial dietary supplements. Algal Res 2021;54:102189. https://doi.org/10.1016/j.algal.2021.102189.
  • [52] Bilad MR, Vandamme D, Foubert I, Muylaert K, Vankelecom IFJ. Harvesting microalgal biomass using submerged microfiltration membranes. Bioresour Technol 2012; 111:343-52. https://doi.org/10.1016/j.biortech.2012.02.009.
  • [53] Dassey AJ, Theegala CS. Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications. Bioresour Technol 2013;128: 241-5. https://doi.org/10.1016/j.biortech.2012.10.061.
  • [54] Luo S, Griffith R, Li W, Peng P, Cheng Y, Chen P, et al. A continuous flocculants-free electrolytic flotation system for microalgae harvesting. Bioresour Technol 2017;239:439-49. https://doi.org/10.1016/j.biortech.2017.04.061.
  • [55] Sathish A, Sims RC. Biodiesel from mixed culture algae via a wet lipid extraction procedure. Bioresour Technol 2012;118: 643-7. https://doi.org/10.1016/j.biortech.2012.05.118.
  • [56] Chisti Y. Biodiesel from microalgae. Biotechnol Adv 2007;25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001.
  • [57] Demirbas A, Demirbas MF. Importance of algae oil as a source of biodiesel. Energy Convers Manage 2011;52:163-70. https://doi.org/10.1016/j.enconman.2010.06.055.
  • [58] Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 2001;92:405-16.
  • [59] Sphera. GaBi solutions. 2021. Retrieved online: http://www.gabisoftware.com/canada/index/.
  • [60] ASHRAE handbook, 1985 fundamentals. Atlanta, Georgia: American Society of Heating, Refrigerating, and Air Conditioning Engineers, Inc.; 1985.
  • [61] Mousavi Maleki SA, Hizam H, Gomes C. Estimation of hourly, daily and monthly global solar radiation on inclined surfaces: models re-visited. Energies 2017;10:134. https://doi.org/10.3390/en10010134.
  • [62] Desjardins SM, Laamanen CA, Basiliko N, Scott JA. Selection and re-acclimation of bioprospected acid-tolerant green microalgae suitable for growth at low pH. Extremophiles 2021;25:129-41. https://doi.org/10.1007/s00792-021-01216-1.
  • [63] Cuaresma M, Garbayo I, Vega JM, Vílchez C. Growth and photosynthetic utilization of inorganic carbon of the microalga Chlamydomonas acidophila isolated from Tinto river. Papers from the 1st. Int Conf Environ Ind Appl Microbiol (BioMicroWorld-2005) 2006;40:158-62. https://doi.org/10.1016/j.enzmictec.2005.10.049.
  • [64] Moser M, Weisse T. Combined stress effect of pH and temperature narrows the niche width of flagellates in acid mining lakes. J Plankton Res 2011;33:1023-32. https://doi.org/10.1093/plankt/fbr014.
  • [65] Souza ALB, Srur AO, Derner RB, Mendes MF. Technical feasibility of residual biomass of microalgae Desmodesmus sp. after supercritical extraction: evaluation of chemical composition. Revista Brasileira de Tecnologia Agroindustrial 2018;12:2578-91. https://doi.org/10.3895/rbta.v12n1.5189.
  • [66] Bernard O, Rémond B. Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresour Technol 2012;123:520-7. https://doi.org/10.1016/j.biortech.2012.07.022.
  • [67] Piiparinen J, Barth D, Eriksen NT, Teir S, Spilling K, Wiebe MG. Microalgal CO2 capture at extreme pH values. Algal Res 2018;321:8. https://doi.org/10.1016/j.algal.2018.04.021.
  • [68] Bharathan B, Sasmito AP, Ghoreishi-Madiseh SA. Analysis of energy consumption and carbon footprint from underground haulage with different power sources in typical Canadian mines. J Cleaner Prod 2017;166:21-31. https://doi.org/10.1016/j.jclepro.2017.07.233.
  • [69] Rajak U, Nashine P, Verma TN. Effect of Spirulina microalgae biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine. Fuel 2020;268:117305. https://doi.org/10.1016/j.fuel.2020.117305.
  • [70] Anwar M, Rasul MG, Ashwath N. A pragmatic and critical analysis of engine emissions for biodiesel blended fuels. Fuel 2020;270:117513. https://doi.org/10.1016/j.fuel.2020.117513.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8d8769f-e2da-4427-8638-3261fd6301da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.