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Abstract

An adaptive fuzzy controller is designed for spark-ignited (SI) engines, under the con-
straint that the system’s model is unknown. The control algorithm aims at satisfying the
H∞ tracking performance criterion, which means that the influence of the modeling errors
and the external disturbances on the tracking error is attenuated to an arbitrary desir-
able level. After transforming the SI-engine model into the canonical form, the resulting
control inputs are shown to contain nonlinear elements which depend on the system’s pa-
rameters. The nonlinear terms which appear in the control inputs are approximated with
the use of neuro-fuzzy networks. It is shown that a suitable learning law can be defined
for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop sys-
tem stability. With the use of Lyapunov stability analysis it is proven that the proposed
adaptive fuzzy control scheme results in H∞ tracking performance. The efficiency of the
proposed adaptive fuzzy control scheme is checked through simulation experiments.

1 Introduction

In the last years there has been significant re-
search effort in the development of embedded con-
trol systems for the automotive industry, aiming
at improving the performance of vehicle’s engines
in terms of produced power, at reducing fuel con-
sumption and at elimination the emission of exhaust
gases. In particular, the problem of control of the
rotation speed of SI-engines as well as the problem
of control of the engine’s pressure manifolds has
been approached with different methods [1-2]. In
[3] a nonlinear state space controller for turn speed
(and consequently the torque) of a spark-ignited en-
gine is proposed. The controller design is based
on feedback linearization in combination with pole
placement. In [4] time-varying internal model-
based design is applied to compensate for the time-

varying but angle dependent pressure pulsations in
the fuel injection system of SI-engines. In [5] a con-
trol method for the air-path system of SI-engines is
presented. The first part considers generation of the
motion-planning trajectory of the intake manifold
pressure from a torque set point. Then, feedfor-
ward and feedback control laws are presented. In
[6] a feedback linearization approach based on dif-
ferential flatness theory is proposed for the control
of the air system of a turbocharged gasoline engine.
Finally, in [7] a model-based approach is pursued
to maximize an SI-engine’s torque through optimal
control of the variable valve timing (VVT) and the
variable gas turbine (VGT).

To make embedded control systems capable
of functioning efficiently under variable operating
conditions and despite modeling uncertainties and
external perturbations, robustness of the control al-
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gorithm has become a prerequisite [8-10]. An ap-
proach for obtaining such robustness has been the
development of adaptive neurofuzzy control meth-
ods [11-12]. It has been shown through theoret-
ical stability analysis and confirmed through ex-
perimental tests that neurofuzzy approximators can
be used in indirect adaptive control schemes where
their role is to identify online the unknown system
dynamics and to provide the control with this infor-
mation that is used for generating the control inputs
[13-17]. Moreover, in the last years specific results
have produced about the use of neurofuzzy adaptive
controllers in embedded control systems for com-
bustion engines [20-25]. In this paper a new non-
linear adaptive-fuzzy control scheme based on dif-
ferential flatness theory is proposed for SI-engines.
The new results come to extend the method pre-
sented in [26-30]. By showing that the SI-engine
model is a differentially flat one it becomes possible
to transform it to the linear canonical form. For the
latter description of the system’s dynamics the de-
sign of a state feedback controller becomes easier.
After transformation to the linear canonical form,
the resulting control input for the engine is shown
to contain nonlinear elements which depend on the
system’s parameters. If the parameters of the sys-
tem are unknown, then the nonlinear terms which
appear in the control signal can be approximated
with the use of neuro-fuzzy networks [18-19]. In
the paper it is shown that a suitable learning law can
be defined for the aforementioned neuro-fuzzy ap-
proximators so as to preserve the closed-loop sys-
tem stability. Lyapunov stability analysis proves
also that the proposed flatness-based adaptive fuzzy
control scheme results in H∞ tracking performance.

The paper proposes nonlinear feedback control
for SI engines of an unknown dynamical model
with the use of a differential flatness theory adap-
tive fuzzy control method. On the one side, adaptive
fuzzy control has been proven to be an efficient non-
linear control method [31-35]. On the other side,
differential flatness theory stands for a major di-
rection in the design of nonlinear control systems
[36-45]. Adaptive fuzzy control system based on
differential flatness theory extends the class of sys-
tems to which indirect adaptive fuzzy control can
be applied. This is important for the design of
controllers, capable of efficiently compensating for
modeling uncertainties and external disturbances in
nonlinear dynamical systems. Unlike other adap-

tive fuzzy control schemes which are based on sev-
eral assumptions about the structure of the nonlin-
ear system as well as about the uncertainty charac-
terizing the system’s model, the proposed adaptive
fuzzy control scheme based on differential flatness
theory offers an exact solution to the design of fuzzy
controllers for unknown dynamical systems. The
only assumption needed for the design of the con-
troller and for succeeding H∞ tracking performance
for the control loop is that there exists a solution for
a Riccati equation associated to the linearized error
dynamics of the differentially flat model. This as-
sumption is quite reasonable for several nonlinear
systems, thus providing a systematic approach to
the design of reliable controllers for such systems
[29], [34].

The structure of the paper is as follows: in Sec-
tion 2 the dynamic model of the SI-engine is an-
alyzed and its state-space description is given. In
Section 3 feedback linearizing control of the SI-
engine using Lie algebra is introduced. In Section 4
Feedback linearizing control of the SI engine using
differential flatness theory is analyzed. In Section 5
flatness-based adaptive fuzzy control for the spark
ignited engine is analyzed. In Section 6 Lyapunov
stability analysis is given. In 7 simulation tests are
carried out to evaluate the performance of the con-
trol loop. Finally, in Section 8 concluding remarks
are stated.

2 Dynamic model of the SI engine

2.1 State-space description of the SI-
engine

It is possible to control the intake pressure pm

and the rotational speed of the engine’s shaft ω by
adjusting the angle of the air throttle. It is con-
sidered that the associated control loop is indepen-
dent from the loops of the fuel injection control and
spark timing control (Fig. 1)

The basic equations of the system are:

ω̇ = kω1 pm(t − τd)+ kω2 + kω3Tfm

ṗm = kp1ωpm + kp2ω+ kp3u
y1 = ω

(1)

The variable of the intake pressure appears with
time delay in the equation of the turn speed in the
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Figure 1. Diagram of the spark-ignited engine

second row of the model of the SI engine. Using
that pmd = pm(t − τd) and

pm(t − τd) =
1

τs+1 pm (2)

while τ = ad/ω and ad is a parameter that is mea-
sured in radians. Denoting kd = −1/ad one has
about the dynamics of the delayed intake pressure
variable

pmd = kdω(pmd − pm) (3)

Using the previous formulation, and defining the
state variables x1 = ω, x2 = pmd and x3 = pm, the
dynamics of the SI engine is written as

ẋ1 = kω1x2 + kω2 + kω3Tfm

ẋ2 = Kdx1(x2 − x3)
ẋ3 = kp1x1x3 + kp2x1 + kp3u

(4)

where Tfm are friction torques, which can be also
perceived as disturbances. In the above equations
coefficients kpi , i = 1,2,3, kωi , i = 1,2,3 and Kd
are associated with the combustion cycle of the SI-
engine and are defined in [1-2].

The model also takes the matrix form

ẋ = f (x)+g(x)u (5)

with

f (x) =




kω1x2 + kω2 + kω3Tfm

kdx1(x2 − x3)
kp1x1x3 + kp2x1


 g(x) =




0
0

kp3




(6)

3 Feedback linearizing control of
the SI-engine using Lie algebra

Using Lie derivatives, the following state variables
are defined for the SI-engine model of Eq. (4):
z1 = h1(x) = x1, z2 = L f h1(x) and z3 = L2

f h1(x). It
holds that

z2 = L f h1(x) = ∂h1
∂x1

f1 +
∂h1
∂x2

f2 +
∂h1
∂x3

f3⇒
z2 = f1⇒z2 = kω1x2 + kω2 + kω3Tfm

(7)

In a similar manner one obtains (8)
Moreover, it holds that (9)

Additionally, it holds that (10)

while one also obtains (11)

which also shows that the relative degree of the SI-
engine model is n = 3. It can be also confirmed that
it holds

ż1 = z2
ż2 = z3

ż3 = L3
f h1(x)+LgL2

f h1(x)u
(12)

which after defining the new control input v =
L3

f h1(x) + LgL2
f h1(x)u can be written in the linear

canonical (Brunovsky) form

Figure 1: Diagram of the spark-ignited engine

ω̇ = kω1
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(1)

The variable of the intake pressure appears with time delay in the equation of the turn speed in the second
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pm(t− τd) =
1

τs+1pm (2)

while τ = ad/ω and ad is a parameter that is measured in radians. Denoting kd = −1/ad one has about
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Using the previous formulation, and defining the state variables x1 = ω, x2 = pmd
and x3 = pm, the
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u
(4)

where Tfm are friction torques, which can be also perceived as disturbances. In the above equations coeffi-
cients kpi

, i = 1, 2, 3, kωi
, i = 1, 2, 3 and Kd are associated with the combustion cycle of the SI-engine and

are defined in [1-2].

The model also takes the matrix form

ẋ = f(x) + g(x)u (5)

with

3
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z3 = L2
f h1(x) = ∂z2

∂x1
f1 +

∂z2
∂x2

f2 +
∂z2
∂x3

f3⇒
z3 = f1⇒z2 = kω1x2 + kω2 + kω3Tfm⇒

z3 = kω1 f2⇒z3 = kω1kdx1(x2 − x3)

(8)

L3
f h1(x) = ∂z3

∂x1
f1 +

∂z3
∂x2

f2 +
∂z3
∂x3

f3⇒
L3

f h1(x) = kω1kd(x2 − x3) f1 + kω1kdx1 f2 − kω1kdx1 f3⇒
L3

f h1(x) = kω1kd(x2 − x3)[kω1x2 + kω2 + kω3Tfm ]+

+kω1kdx1[kdx1(x2 − x3)]− kω1kdx1[kp1x1x3 + kp2x1]

(9)

LgL f h1(x) = Lgz2⇒LgL f h1(x) = ∂z2
∂x1

g1 +
∂z2
∂x2

g2 +
∂z2
∂x3

g3⇒
LgL f h1(x) = ∂z2

∂x3
kp3⇒LgL f h1(x) =

∂ f2
∂x3

kp3

⇒LgL f h1(x) = 0
(10)

LgL2
f h1(x) = Lgz3⇒LgL2

f h1(x) = ∂z3
∂x1

g1 +
∂z3
∂x2

g2 +
∂z3
∂x3

g3⇒
LgL2

f h1(x) =−kω1kdkp1x1
(11)




ż1
ż2
ż3


=




0 1 0
0 0 1
0 0 0






z1
z2
z3


+




0
0
1


v (13)

From the relation z(3)1 = v the state feedback con-
trol law for the SI-engine that assures asymptotic
convergence of the state vector z to the desirable
setpoint zd is given by

v = z(3)1d − k1(z̈1 − z̈1,d)− k2(ż1 − ż1,d)− k3(z1 − z1,d)
(14)

Using that the control input for the linearized model
is v = L3

f h1(x)+LgL2
f h1(x)u the control input that

is finally applied to the SI-engine is

u = 1
LgL2

f h1(x)
[v−L3

f h1(x)] (15)

4 Feedback linearizing control of
the SI-engine using differential
flatness theory

The state-space description of the SI-engine dynam-
ics given in Eq. (4) is considered again

ẋ1 = kω1x2 + kω2 + kω3Tfm (16)

ẋ2 = Kdx1(x2 − x3) (17)

ẋ3 = kp1x1x3 + kp2x1 + kp3u (18)

The flat output of the SI-engine model is taken to be
y = x1, which is the engine’s turn speed. It will be
shown that all state variables of the system and the
control input can be written as functions of the flat
output and its derivatives, and thus the SI-engine
model is a differentially flat one.

Eq. (16) is solved with respect to x2. This gives

x2 =
ẋ1−kω2−kω3 Tfm

kω1
⇒x2 =

ẏ−kω2−kω3 Tfm
kω1

⇒
x2 = f2(y, ẏ)

(19)

Eq. (17) is solved with respect to x3. This gives

x3 =
kdx1x2−ẋ2

kdx1
⇒x3 =

kdy f2(y,ẏ)− ḟ2(y,ẏ)
kdy ⇒

x3 = f3(y, ẏ)
(20)

Moreover, from Eq. (18) it holds

u =
ẋ3−kp1 x1x3−kp2 x1

kp3
⇒u =

ḟ3(y,ẏ)−kp1 y f3(y,ẏ)−kp2 y
kp3

(21)

Therefore, all state variables and the control input
in the model of the SI-engine are described as func-
tions of the flat output and its derivatives. Conse-
quently, the SI-engine model is a differentially flat
one. It holds that
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y = x1
ẏ = ẋ1⇒ẏ = kω1x2 + kω2 + kω3Tfm

(22)

Differentiating once more with respect to time gives

ÿ = kω1 ẋ2 + kω3 Ṫfm⇒
ÿ = kω1kdx1(x2 − x3)+ kω3 Ṫfm

(23)

By deriving once more with respect to time one gets
(24)

Therefore one arrives at a description of the SI-
engine dynamics which is equivalent to the one ob-
tained from linearization with the use of Lie algebra

y(3) = L3
f h1(x)+LgL2

f h1(x)u (25)

where (26) and also

LgL2
f h1(x) =−kω1kdkp3x1 (27)

For the previous description of the SI-engine dy-
namics, the following state variables are defined
z1 = y, z2 = ẏ and z3 = ÿ, the following state-space
model is obtained

ż1 = z2
ż2 = z3

ż3 = L2
f h1(x)+LgL2

f h1(x)u
(28)

The linearized model of the SI-engine is finally
written in the Brunovsky canonical form




ż1
ż2
ż3


=




0 1 0
0 0 1
0 0 0






z1
z2
z3


+




0
0
1


v (29)

From the relation z(3)1 = v the state feedback con-
trol law for the SI-engine that assures asymptotic
convergence of the state vector z to the desirable
setpoint zd is given by

v = z(3)1d − k1(z̈1 − z̈1,d)− k2(ż1 − ż1,d)− k3(z1 − z1,d)
(30)

Using that the control input for the linearized model
is v = L3

f h1(x)+LgL2
f h1(x)u the control input that

is finally applied to the SI-engine is

u = 1
LgL2

f h1(x)
[v−L3

f h1(x)] (31)

5 Flatness-based adaptive fuzzy
control

5.1 Nonlinear system transformation into
the Brunovsky form

A single-input differentially flat dynamical system
is considered again:

ẋ = fs(x, t)+gs(x, t)(u+ d̃), x∈Rn, u∈R, d̃∈R
(32)

where fs(x, t), gs(x, t) are nonlinear vector fields
defining the system’s dynamics, u denotes the con-
trol input and d̃ denotes additive input disturbances.
Knowing that the system of Eq. (32) is differen-
tially flat, the next step is to try to write it into a
Brunovsky form. It has been shown that, in gen-
eral, transformation into the Brunovsky (canoni-
cal) form can be succeeded for systems that admit
static feedback linearization [42]. Single input dif-
ferentially flat systems, admit static feedback lin-
earization, therefore they can be transformed into
the Brunovksy form. For multi-input differentially
flat systems there may also exist a transformation
into the Brunovsky form [34].

The selected flat output is again denoted by y. For
the state variables xi of the system of Eq. (32) it
holds

xi = ϕi(y, ẏ, · · · ,y(r−1)), i = 1, · · · ,n (33)

while for the control input it holds

u = ψ(y, ẏ, · · · ,y(r−1),y(r)) (34)

Introducing the new state variables y1 = y and yi =
y(i−1), i = 2, · · · ,n, the initial system of Eq. (32)
can be written in the Brunovsky form:(35)

where v = f (x, t)+ g(x, t)(u+ d̃) is the control in-
put for the linearized model, and d̃ denotes additive
input disturbances. Thus one can use that

y(n) = f (x, t)+g(x, t)(u+ d̃) (36)
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y(3) = kω1kdẋ1(x2 − x3)+ kω1kdx1ẋ2 − kω1kdx1ẋ3 + kω3 T̈fm⇒
y(3) = kω1kd(x2 − x3)[kω1x2 + kω2 + kω3Tfm ]+

+kω1kdx1[kdx1(x2 − x3)]− kω1kdx1[kp1x1x3 + kp2x1]+
−kω1kdkp3x1u+ kω3 T̈fm

(24)

L3
f h1(x) = kω1kd(x2 − x3)[kω1x2 + kω2 + kω3Tfm ]+

+kω1kdx1[kdx1(x2 − x3)]− kω1kdx1[kp1x1x3 + kp2x1]+ kω3 T̈fm

(26)

where f (x, t), g(x, t) are unknown nonlinear func-
tions, while as mentioned above d̃ is an unknown
additive disturbance. It is possible to make the sys-
tem’s state vector x follow a given bounded refer-
ence trajectory xd . In the presence of model un-
certainties and external disturbances, denoted by
wd , successful tracking of the reference trajectory
is provided by the H∞ criterion [30],[17]:

∫ T
0 eT Qedt ≤ ρ2∫ T

0 wd
T wddt (37)

where ρ is the attenuation level and corresponds to
the maximum singular value of the transfer function
G(s) of the linearized model associated to Eq. (35)
and Eq. (36).

Remark 1: From the H∞ control theory, the H∞
norm of a linear system with transfer function
G(s), is denoted by ||G||∞ and is defined as
||G||∞ = supωσmax[G( jω)] [26-30]. In this defini-
tion sup denotes the supremum or least upper bound
of the function σmax[G( j(ω)], and thus the H∞ norm
of G(s) is the maximum value of σmax[G( j(ω)]
over all frequencies ω. H∞ norm has a physi-
cally meaningful interpretation when considering
the system y(s) = G(s)u(s). When this system is
driven with a unit sinusoidal input at a specific fre-
quency, σmax|G( jω)| is the largest possible output
for the corresponding sinusoidal input. Thus, the
H∞ norm is the largest possible amplification over
all frequencies of a sinusoidal input.

Remark 2: The input additive disturbance term d̃ in
the dynamics of the controlled system does not af-
fect the transformation into the canonical form that
is performed according to the differential flatness
theory. Such a disturbance is efficiently compen-
sated by the proposed adaptive fuzzy control law.

5.2 Control law

For the measurable state vector x of the system of
Eq. (35) and Eq. (36), and for uncertain functions
f (x, t) and g(x, t) an appropriate control law is

u =
1

ĝ(x, t)
[y(n)d − f̂ (x, t)−KT e+uc] (38)

with e = [e, ė, ë, · · · ,e(n−1)]T and e = y− yd , KT =
[kn,kn−1, · · · ,k1], such that the polynomial e(n) +
k1e(n−1) + k2e(n−2) + · · ·+ kne is Hurwitz. The con-
trol law of Eq. (38) results into (39)

where the supervisory control term uc aims at the
compensation of the approximation error

w = [ f (x, t)− f̂ (x, t)]+ [g(x, t)− ĝ(x, t)]u (41)

as well as of the additive disturbance term d1 =
g(x, t)d̃. The above relation can be written in a
state-equation form. The state vector is taken to be
eT = [e, ė, · · · ,e(n−1)], which after some operations
yields (41)

where

A =




0 1 0 · · · · · · 0
0 0 1 · · · · · · 0
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · · · · 1
0 0 0 · · · · · · 0



, B =




0
0
· · ·
· · ·
0
1




(42)

and K = [kn,kn−1, · · · ,k2,k1]
T . As explained above,

the control signal uc is an auxiliary control term,
used for the compensation of d̃ and w, which can be
selected according to H∞ control theory:

uc =− 1
r BT Pe (43)
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ence trajectory xd . In the presence of model un-
certainties and external disturbances, denoted by
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the system y(s) = G(s)u(s). When this system is
driven with a unit sinusoidal input at a specific fre-
quency, σmax|G( jω)| is the largest possible output
for the corresponding sinusoidal input. Thus, the
H∞ norm is the largest possible amplification over
all frequencies of a sinusoidal input.

Remark 2: The input additive disturbance term d̃ in
the dynamics of the controlled system does not af-
fect the transformation into the canonical form that
is performed according to the differential flatness
theory. Such a disturbance is efficiently compen-
sated by the proposed adaptive fuzzy control law.

5.2 Control law

For the measurable state vector x of the system of
Eq. (35) and Eq. (36), and for uncertain functions
f (x, t) and g(x, t) an appropriate control law is

u =
1

ĝ(x, t)
[y(n)d − f̂ (x, t)−KT e+uc] (38)

with e = [e, ė, ë, · · · ,e(n−1)]T and e = y− yd , KT =
[kn,kn−1, · · · ,k1], such that the polynomial e(n) +
k1e(n−1) + k2e(n−2) + · · ·+ kne is Hurwitz. The con-
trol law of Eq. (38) results into (39)

where the supervisory control term uc aims at the
compensation of the approximation error

w = [ f (x, t)− f̂ (x, t)]+ [g(x, t)− ĝ(x, t)]u (41)

as well as of the additive disturbance term d1 =
g(x, t)d̃. The above relation can be written in a
state-equation form. The state vector is taken to be
eT = [e, ė, · · · ,e(n−1)], which after some operations
yields (41)

where

A =
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and K = [kn,kn−1, · · · ,k2,k1]
T . As explained above,

the control signal uc is an auxiliary control term,
used for the compensation of d̃ and w, which can be
selected according to H∞ control theory:

uc =− 1
r BT Pe (43)
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v (35)

e(n) =−KT e+uc +[ f (x, t)− f̂ (x, t)]+ [g(x, t)− ĝ(x, t)]u+g(x, t)d̃ (39)

ė = (A−BKT )e+Buc +B{[ f (x, t)− f̂ (x, t)]+ [g(x, t)− ĝ(x, t)]u+d1} (40)

5.3 Approximators of unknown system dy-
namics

The approximation of functions f (x, t) and g(x, t)
of Eq. (36) can be carried out with neuro-fuzzy
networks (Figure 2.). The estimation of f (x, t) and
g(x, t) can be written as [11]:

f̂ (x|θ f ) = θT
f ϕ(x), ĝ(x|θg) = θT

g ϕ(x), (44)

where ϕ(x) are kernel functions with elements

ϕl(x) =
∏n

i=1µl
Ai
(xi)

∑N
l=1 ∏n

i=1µl
Ai
(xi)

l = 1,2, · · · ,N (45)

It is assumed that the weights θ f and θg vary in the
bounded areas Mθ f and Mθg which are defined as

Mθ f = {θ f ∈ Rh : ||θ f || ≤ mθ f },
Mθg = {θg ∈ Rh : ||θg|| ≤ mθg}

(46)

with mθ f and mθg positive constants.

The values of θ f and θg that give optimal approxi-
mation are:

θ∗
f = arg minθ f ∈Mθ f

[supx∈Ux | f (x)− f̂ (x|θ f )|]
θ∗

g = arg minθg∈Mθg
[supx∈Ux |g(x)− ĝ(x|θg)|]

(47)

The approximation error of f (x, t) and g(x, t) is
given by

w = [ f̂ (x, |θ∗
f )− f (x, t)]+ [ĝ(x|θ∗

f )−g(x, t)]u ⇒

w = {[ f̂ (x|θ∗
f )− f̂ (x|θ f )]+ [ f̂ (x|θ f )− f (x, t)]}+

+{[ĝ(x|θ∗
g)− ĝ(x|θg)]+ [ĝ(x|θg)−g(x, t)]u}

(48)

where: i) f̂ (x|θ∗
f ) is the approximation of f for the

best estimation θ∗
f of the weights’ vector θ f , ii)

ĝ(x|θ∗
g) is the approximation of g for the best esti-

mation θ∗
g of the weights’ vector θg.

The approximation error w can be decomposed into
wa and wb, where

wa = [ f̂ (x|θ f )− f̂ (x|θ∗
f )]+ [ĝ(x|θg)− ĝ(x|θ∗

g)]u
wb = [ f̂ (x|θ∗

f )− f (x, t)]+ [ĝ(x|θ∗
g)−g(x, t)]u

(49)

Finally, the following two parameters are defined:

θ̃ f = θ f −θ∗
f

θ̃g = θg −θ∗
g.

(50)

Remark 3: A difference between the neurofuzzy ap-
proximator depicted in Figure 2 and a RBF neural
network is the normalization layer that appears be-
tween the Gaussian basis functions layer and the
weights output layer. After normalization, the sum
(over the complete set of rules) of the fuzzy mem-
bership values of each input pattern becomes equal
to 1. The neurofuzzy model provides also linguistic
interpretability (in terms of fuzzy rules) about the
implemented control law [18].
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Figure 2. Neuro-fuzzy approximator: Gi Gaussian basis function, Ni: normalization unit

6 Lyapunov stability analysis

The adaptation law of the weights θ f and θg as
well as of the supervisory control term uc is derived
by the requirement for negative definite derivative
of the quadratic Lyapunov function

V =
1
2

eT Pe+
1

2γ1
θ̃T

f θ̃ f +
1

2γ2
θ̃T

g θ̃g (51)

Substituting Eq. (40) into Eq. (51) and differentiat-
ing gives

V̇ = 1
2 ėT Pe+ 1

2 eT Pė+ 1
γ1

θ̃T
f

˙̃θ f +
1
γ2

θ̃T
g

˙̃θg ⇒

V̇ = 1
2 eT{(A−BKT )T P+P(A−BKT )}e+

+BT Pe(uc +w+d1)+
1
γ1

θ̃T
f

˙̃θ f +
1
γ2

θ̃T
g

˙̃θg

(52)

Assumption 1: For given positive definite matrix Q
and coefficients r and ρ there exists a positive defi-
nite matrix P, which is the solution of the following
matrix equation (53)

Substituting Eq. (53) into V̇ yields after some oper-
ations (54)

It holds that

˙̃θ f = θ̇ f − θ̇∗
f = θ̇ f

˙̃θg = θ̇g − θ̇∗
g = θ̇g

(55)

The following weight adaptation laws are consid-
ered [26]

θ̇ f = { −γ1eT PBϕ(x) i f ||θ f ||< mθ f

0 ||θ f || ≥ mθ f

(56)

θ̇g = { −γ2eT PBϕ(x)uc i f ||θg||< mθg

0 ||θg|| ≥ mθg

(57)

θ̇ f and θ̇g are set to 0, when

||θ f || ≥ mθ f , ||θg|| ≥ mθg . (58)

The update of θ f stems from a LMS algorithm on
the cost function 1

2( f − f̂ )2. The update of θg is also
of the LMS type, while uc implicitly tunes the adap-
tation gain γ2. Substituting Eq. (56) and (57) in V̇
finally gives (59)

Denoting w1 = w+d1 +wα one gets (60)

Lemma: The following inequality holds:

1
2 eT PBw1 +

1
2 wT

1 BT Pe− 1
2ρ2 eT PBBT Pe ≤ 1

2 ρ2wT
1 w1

(61)

Proof : The binomial (ρa− 1
ρ b)2 ≥ 0 is considered.

Expanding the left part of the above inequality one
gets

ρ2a2 + 1
ρ2 b2 −2ab ≥ 0 ⇒ 1

2 ρ2a2 + 1
2ρ2 b2 −ab ≥ 0 ⇒

ab− 1
2ρ2 b2 ≤ 1

2 ρ2a2 ⇒ 1
2 ab+ 1

2 ab− 1
2ρ2 b2 ≤ 1

2 ρ2a2

(62)

The following substitutions are carried out: a = w1
and b = eT PB and the previous relation becomes

1
2 wT

1 BT Pe+ 1
2 eT PBw1 − 1

2ρ2 eT PBBT Pe ≤ 1
2 ρ2wT

1 w1

(63)

The previous inequality is used in V̇ , and the right
part of the associated inequality is enforced

Figure 2: Neuro-fuzzy approximator: Gi Gaussian basis function, Ni: normalization unit

where: i) f̂(x|θ∗f ) is the approximation of f for the best estimation θ∗f of the weights’ vector θf , ii) ĝ(x|θ
∗

g)
is the approximation of g for the best estimation θ∗g of the weights’ vector θg.

The approximation error w can be decomposed into wa and wb, where

wa = [f̂(x|θf )− f̂(x|θ∗f )] + [ĝ(x|θg)− ĝ(x|θ∗g)]u

wb = [f̂(x|θ∗f )− f(x, t)] + [ĝ(x|θ∗g)− g(x, t)]u
(49)

Finally, the following two parameters are defined:

θ̃f = θf − θ∗f
θ̃g = θg − θ∗g .

(50)

Remark 3 : A difference between the neurofuzzy approximator depicted in Fig. 2 and a RBF neural network
is the normalization layer that appears between the Gaussian basis functions layer and the weights output
layer. After normalization, the sum (over the complete set of rules) of the fuzzy membership values of each
input pattern becomes equal to 1. The neurofuzzy model provides also linguistic interpretability (in terms
of fuzzy rules) about the implemented control law [18].

6 Lyapunov stability analysis

The adaptation law of the weights θf and θg as well as of the supervisory control term uc is derived by the
requirement for negative definite derivative of the quadratic Lyapunov function

V =
1

2
eTPe+

1

2γ1
θ̃Tf θ̃f +

1

2γ2
θ̃Tg θ̃g (51)

Substituting Eq. (41) into Eq. (51) and differentiating gives

V̇ = 1
2 ė

TPe+ 1
2e

TP ė+ 1
γ1

θ̃Tf
˙̃θf + 1

γ2

θ̃Tg
˙̃θg ⇒

V̇ = 1
2e

T {(A−BKT )TP + P (A−BKT )}e+

+BTPe(uc + w + d1) +
1
γ1

θ̃Tf
˙̃θf + 1

γ2

θ̃Tg
˙̃θg

(52)

Assumption 1 : For given positive definite matrix Q and coefficients r and ρ there exists a positive definite
matrix P , which is the solution of the following matrix equation

9
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Figure 2. Neuro-fuzzy approximator: Gi Gaussian basis function, Ni: normalization unit

6 Lyapunov stability analysis

The adaptation law of the weights θ f and θg as
well as of the supervisory control term uc is derived
by the requirement for negative definite derivative
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2 ėT Pe+ 1

2 eT Pė+ 1
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Assumption 1: For given positive definite matrix Q
and coefficients r and ρ there exists a positive defi-
nite matrix P, which is the solution of the following
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Substituting Eq. (53) into V̇ yields after some oper-
ations (54)

It holds that

˙̃θ f = θ̇ f − θ̇∗
f = θ̇ f
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The update of θ f stems from a LMS algorithm on
the cost function 1

2( f − f̂ )2. The update of θg is also
of the LMS type, while uc implicitly tunes the adap-
tation gain γ2. Substituting Eq. (56) and (57) in V̇
finally gives (59)

Denoting w1 = w+d1 +wα one gets (60)

Lemma: The following inequality holds:
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Proof : The binomial (ρa− 1
ρ b)2 ≥ 0 is considered.

Expanding the left part of the above inequality one
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The following substitutions are carried out: a = w1
and b = eT PB and the previous relation becomes

1
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2 eT PBw1 − 1

2ρ2 eT PBBT Pe ≤ 1
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The previous inequality is used in V̇ , and the right
part of the associated inequality is enforced
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(A−BKT )
T

P+P(A−BKT )−PB(
2
r
− 1

ρ2 )B
T P+Q = 0 (53)

V̇ =−1
2 eT Qe+ 1

2 eT PB( 2
r −

1
ρ2 )BT Pe+BT Pe(−1

r eT PB)+

+BT Pe(w+d1)+
1
γ1

θ̃T
f

˙̃θ f +
1
γ2

θ̃T
g

˙̃θg
(54)

V̇≤− 1
2

eT Qe+
1
2

ρ2wT
1 w1 (64)

Eq. (64) can be used to show that the H∞ perfor-
mance criterion is satisfied . The integration of V̇
from 0 to T gives

∫ T
0 V̇ (t)dt ≤−1

2
∫ T

0 ||e||2Qdt + 1
2 ρ2∫ T

0 ||w1||2dt ⇒

2V (T )+
∫ T

0 ||e||2Qdt ≤ 2V (0)+ρ2∫ T
0 ||w1||2dt

(65)

Moreover, if there exists a positive constant Mw > 0
such that

∫ ∞
0 ||w1||2dt ≤ Mw (66)

then one gets

∫ ∞
0 ||e||2Qdt ≤ 2V (0)+ρ2Mw (67)

Thus, the integral
∫ ∞

0 ||e||2Qdt is bounded. More-
over, V (T ) is bounded and from the definition of the
Lyapunov function V in Eq. (51) it becomes clear
that e(t) will be also bounded since e(t) ∈ Ωe =
{e|eT Pe≤2V (0)+ρ2Mw}.

According to the above and with the use of Bar-
balat’s Lemma one obtains limt→∞e(t) = 0.

7 Simulation tests

The efficiency of the proposed control scheme was
tested in the case of tracking of different setpoints.
The associated results are depicted in Fig. 3 and in
Fig. 4. It has been confirmed that the closed con-
trol loop succeeded fast and accurate tracking to all
these setpoints while the variations of the control
signal applied to the SI engine remained smooth.

8 Conclusions

In this paper, a new neurofuzzy adaptive control
scheme for spark ignited (SI) engines has been de-
veloped with the use of differential flatness theory.
It has been shown that the dynamic model of the
SI engine is a differentially flat one, which means
that all state variables and the control inputs can be
expressed as functions of a unique flat output vari-
able and its derivatives. By showing that the model
satisfies differential flatness properties it has been
shown that it can be transformed to the linear canon-
ical (Brunovsky) form. For the latter description the
design of a state feedback controller becomes eas-
ier. Moreover, to cope with parametric uncertainties
and external disturbances for the SI model, even in
the case that the system’s model is completely un-
known, the development of an adaptive fuzzy con-
trol scheme have been proposed.

Actually, for the description of the engine’s
model in the canonical form, the associated trans-
formed inputs where shown to contain unknown
nonlinear functions which had to be identified on-
line with the use of neurofuzzy approximators. It
has been proven that a convergent adaptation law
for the parameters of the neurofuzzy networks ex-
ists, as a result of the requirement to have a nega-
tive definite Lyapunov function for the closed con-
trol loop. Moreover, by using such Lyapunov stabil-
ity analysis methods it has been confirmed that the
closed loop of the control system satisfies H∞ track-
ing performance criteria, and this assures improved
robustness to external perturbations affecting the
combustion engine. The efficiency of the proposed
control scheme has been confirmed through simula-
tion experiments.
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V̇ =−1
2 eT Qe− 1

2ρ2 eT PBBT Pe+ eT PB(w+d1)−
−eT PB(θ f −θ∗

f )
T ϕ(x)− eT PB(θg −θ∗

g)
T ϕ(x)uc ⇒

V̇ =− 1
2 eT Qe− 1

2ρ2 eT PBBT Pe+ eT PB(w+d1)+ eT PBwα.

(59)

V̇ =−1
2 eT Qe− 1

2ρ2 eT PBBT Pe+ eT PBw1 or equivalently,

V̇ =− 1
2 eT Qe− 1

2ρ2 eT PBBT Pe+ 1
2 eT PBw1 +

1
2 wT

1 BT Pe
(60)

Figure 3. Adaptive fuzzy control of the SI engine: (a) tracking of setpoint 1 from state variables
xi, i = 1, · · · ,3, (b) tracking of setpoint 2 from state variables xi, i = 1, · · · ,3

Figure 4. Adaptive fuzzy control of the SI engine: (a) tracking of setpoint 3 from state variables
xi, i = 1, · · · ,3, (b) tracking of setpoint 4 from state variables xi, i = 1, · · · ,3

V̇≤−
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2
eTQe+

1

2
ρ2wT

1 w1 (64)

Eq. (64) can be used to show that the H∞ performance criterion is satisfied . The integration of V̇ from
0 to T gives
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According to the above and with the use of Barbalat’s Lemma one obtains limt→∞e(t) = 0.

7 Simulation tests

The efficiency of the proposed control scheme was tested in the case of tracking of different setpoints. The
associated results are depicted in Fig. 3 and in Fig. 4. It has been confirmed that the closed control loop
succeeded fast and accurate tracking to all these setpoints while the variations of the control signal applied
to the SI engine remained smooth.
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Figure 3: Adaptive fuzzy control of the SI engine: (a) tracking of setpoint 1 from state variables xi, i =
1, · · · , 3, (b) tracking of setpoint 2 from state variables xi, i = 1, · · · , 3
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Figure 4: Adaptive fuzzy control of the SI engine: (a) tracking of setpoint 3 from state variables xi, i =
1, · · · , 3, (b) tracking of setpoint 4 from state variables xi, i = 1, · · · , 3

8 Conclusions

In this paper, a new neurofuzzy adaptive control scheme for spark ignited (SI) engines has been developed
with the use of differential flatness theory. It has been shown that the dynamic model of the SI engine is a
differentially flat one, which means that all state variables and the control inputs can be expressed as func-
tions of a unique flat output variable and its derivatives. By showing that the model satisfies differential
flatness properties it has been shown that it can be transformed to the linear canonical (Brunovsky) form.
For the latter description the design of a state feedback controller becomes easier. Moreover, to cope with
parametric uncertainties and external disturbances for the SI model, even in the case that the system’s
model is completely unknown, the development of an adaptive fuzzy control scheme have been proposed.

Actually, for the description of the engine’s model in the canonical form, the associated transformed inputs
where shown to contain unknown nonlinear functions which had to be identified online with the use of
neurofuzzy approximators. It has been proven that a convergent adaptation law for the parameters of the
neurofuzzy networks exists, as a result of the requirement to have a negative definite Lyapunov function
for the closed control loop. Moreover, by using such Lyapunov stability analysis methods it has been
confirmed that the closed loop of the control system satisfies H∞ tracking performance criteria, and this
assures improved robustness to external perturbations affecting the combustion engine. The efficiency of
the proposed control scheme has been confirmed through simulation experiments.
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