PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties of hot deformed Inconel 718 and X750

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Variations of a flow stress vs. true strain illustrate behavior of material during plastic deformation. Stress-strain relationship is generally evaluated by a torsion, compression and tensile tests. Design/methodology/approach: Compression tests were carried out on precipitations hardenable nickel based superalloys of Inconel 718 and X750 at constant true strain rates of 10-4, 4x10-4, s-1, within temperature through which precipitation hardening phases process occurred (720-1150°C) using thermomechanical simulator Gleeble and dilatometer Baehr 850D/L equipped with compression unit. True stress-true strain curves analysis of hot deformed alloys were described. Findings: On the basis of received flow stress values activation energy of a high-temperature deformation process was estimated. Mathematical dependences (σpl -T i σpl - ε) and compression data were used to determine material’s constants. These constants allow to derive a formula that describes the relationship between strain rate (e), deformation temperature (T) and flow stress σpl. Research limitations/implications Study the flow stress will be continued on the samples after the aging process. Practical implications: The results of high-temperature deformation of the examined Inconel alloys may possibly find some practical use in the workshop practice to predict a flow stress values, but only within particular temperature and strain rate ranges. The results of the study can be used in the aerospace industry to produce blades for jet engines. Originality/value: The results of the study can be used in the aerospace industry to produce blades for jet engines.
Rocznik
Strony
74--80
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Department of Materials Science, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Department of Materials Science, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Department of Materials Science, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
  • Department of Materials Science, The Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
  • [1] H. Mc Queen, Dynamic recovery and its relation to other restoration mechanisms, Scientific Papers of AGH, Metallurgy and Foundry, Cracow 3/8 (1979) 421-450.
  • [2] C.M. Sellars, Dynamic recrystallization, Scientific Papers of AGH, Metallurgy and Foundry, Cracow 5/3 (1979) 377-403.
  • [3] T. Sakai, J.J. Jonas, Dynamic recrystallization: mechanical and microstructural consideration, Acta Metallurgica 32 (1984) 189-208.
  • [4] M. Zielińska, M. Yavorska, M. Poręba, J. Sieniawski, Thermal properties of cast nickel based superalloys, Journal of Archives in Materials Science and Engineering 44/1 (2010) 35-38.
  • [5] A. Nowotnik, High temperature deformation of superalloy Inconel 718, Solid State Phenomena 186 (2012) 147-150.
  • [6] A. Nowotnik, Mechanical and structural aspects of high temperature deformation in Ni alloy, Journal of Achievements in Materials and Manufacturing Engineering 26/2 (2008) 143-146.
  • [7] F. Grosman, Criteria for selection of the characteristics of materials technological plasticity, Proceedings of the XVI International Conference „Design and Technology of Extrusions and Moldings”, Poznań-Wąsowo, 2004, 157-168.
  • [8] J.J. Jonas, C.M. Sellars, W.J. McTegart, Recrystallization of metals during hot deformation, Metallurgical Review 14 (1969) 1-24.
  • [9] T. Sakai, J.J. Jonas, Dynamic recrystallization: mechanical and microstructural considerations, Acta Metallurgica 32 (1984) 198-209.
  • [10] W. Roberts, Deformation, processing and structure, G. Krauss (Eds.), Metals Park, American Society for Metals, Ohio, 1985.
  • [11] C.M. Sellars, W.J. McTegart, On the mechanism of hot deformation, Acta Metallurgica, 14(1966)1136-1138.
  • [12] L. Błaż, The dynamic structural processes in metals and alloys, Publishing House of AGH, Cracow, 1998 (in Polish).
  • [13] R. Sandstörm, R. Lagneborg: A model for static recrystallization after hot deformation, Acta Metallurgica, 23 (1975) 481-489.
  • [14] A.J. McLaren, C.M. Sellars, Modelling distribution of microstructure during hot rolling of stainless steel, Materials Science and Technology 8 (1992) 1090-1098.
  • [15] A. Nowotnik, L. Błaż, J. Sieniawski, Interaction of phase transformation and deformation process during hot deformation of 0.16% C steel, Defect and Diffusion Forum, 237-240(2005)1240-1245.
  • [16] J. Sieniawski, Nickel and titanium alloys in aircraft turbine engines. Advances in Manufacturing Science and Technology 27 (2003) 23-34.
  • [17] A.A. Guimaraes, J.J. Jonas, Recrystallization and aging effects associated with the high temperature deformation of waspaloy and inconel 718, Metallurgical Transaction 12 (1981) 1655-1666.
  • [18] W.J. Weis, Superalloy 718 metallurgy and applications, Hot deformation behavior of an as-cast alloy 718 ingot TMS, E.A. Loria (Eds.), Warrendale, 1989,135-154.
  • [19] S.C. Medeiros, et. all, Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy, Materials Science Engineering A 293 (2000) 198-206.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8cd48cf-cd7a-48f4-beca-cbc24e96901f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.