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A TWO CONES SUPPORT THEOREM
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Abstract. We show that if the Radon transform of a distribution f vanishes outside of an
acute cone C0, the support of the distribution is contained in the union of C0 and another
acute cone C1, the cones are in a suitable position, and f vanishes distributionally in the
direction of the axis of C1, then actually supp f ⊂ C0. We show by examples that this result
is sharp.
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1. INTRODUCTION

One of the most studied aspects of Radon transforms are the support theorems, from
the seminal results of Helgason [8] and Ludwig [12], to recent studies [7], and many
studies in between, as described in [17]. The support theorems are very important in
integral geometry [9]. In most cases the question is whether if the Radon transform of
a distribution vanishes outside of a compact convex set K, and some extra conditions
are satisfied, then the distribution itself has support in K.

The aim of this article is to consider whether if the Radon transform of a distribution
vanishes outside a cone then the support should be contained in the cone. In a way
this study continues the work of Boman [2] and Boman and Lindskog [3], where cones
appear in the extra conditions for compact convex support results. Our main result,
given in Section 4, is a two cone support theorem that says that if the Radon transform
of a distribution f vanishes outside of an acute cone C0, the support of the distribution
is contained in the union of the two suitable located acute cones, C0 ∪ C1, and it
vanishes distributionally in the direction of the axis of C1, then actually supp f ⊂ C0.

It is interesting to observe the special role played by acute cones in the support
theorems of [2], of [3], and the one in this article. There seems to be a geometric
reason for this, since, in a way the acute cones are a natural geometric generalization
of the convex compact sets. Moreover, if we add a point at infinity and consider the
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one point compatification of Rn then near the infinity point the acute cones, with the
extra point added, resemble the convex compact sets near an ordinary point.

The article is completed in Section 5, where we give several examples to show that
our result is sharp in many ways. Preliminary questions about cones and distributions
are considered in Sections 2 and 3.

2. NOTATION

In this note a cone is a subset of Rn of the following form.

Definition 2.1. Let v,w ∈ Rn, with |w| = 1, and let α ≥ 0. The cone with vertex
at v, direction w, and angle α is the set

Cv;w;α = {x ∈ Rn : (x− v) ·w ≥ cosα |x− v|} . (2.1)

We shall mostly consider acute non-degenerate cones, that is, the ones where
0 < α < π/2; notice that if α = 0 the cone reduces to the half line formed by those
points of the form v+tw, t ≥ 0, while if α = π/2 then the cone becomes a half space.

The following definition will also be useful.

Definition 2.2. Let C0 = Cv0;w0;α0 and C1 = Cv1;w1;α1 be two cones. We shall say
C0 and C1 are in position S if C0 \ {v0} ⊂ Int

(
Cv0;−w1;π/2

)
.

The ensuing simple result would be needed in our analysis.

Lemma 2.3. Let C0 = Cv0;w0;α0 be an acute cone and let K be a compact set. Let
x ∈ K \ C0. Then there exists a cone C1 = Cv1;w1;α1 such that C0 and C1 are in
position S, C0 ∪K ⊂ C0 ∪ C1, and such that

w1 · (x− v1) > w1 · (y− v1) for all y ∈ C0. (2.2)

Proof. We can separate the point x and the convex set C0 by a hyperplane [19,
Chp. 18], that is, there exists w1 ∈ Rn, which we may take with |w1| = 1, such that
w1 · (x− v0) > 0, while w1 · (y− v0) < 0 for all y ∈ C0 \ {v0} . Notice now that (2.2)
will be satisfied for any v1; observe also that C0 and C1 are in position S. We just then
take v1 = x−cw1, where c > 0, in such a way that for some angle α1 the acute cone
C1 = Cv1;w1;α1 satisfies C0 ∪K ⊂ C0 ∪ C1, which is possible since K is compact.

3. SEVERAL FACTS ABOUT DISTRIBUTIONS

Let f ∈ D′ (Rn) be a distribution. In general one cannot restrict f to manifolds of
smaller dimension, and, in particular, one cannot restrict it to a hyperplane. However,
it is possible to employ the ensuing procedure to consider the restriction to certain
families of hyperplanes.
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Let us consider Rn as Rn−1 × R, so that the elements of Rn are written as
(y, x) ∈ Rn−1 × R. Let φ ∈ D

(
Rn−1) ; then the evaluation 〈f (y, x) , φ (y)〉y makes

sense as a distribution of the variable x ∈ R, g (x) = 〈f (y, x) , φ (y)〉y , given as

〈g (x) , ϕ (x)〉x = 〈f (y, x) , φ (y)ϕ (x)〉(y,x) , ϕ ∈ D (R) . (3.1)

Sometimes the distribution g will have a value in the sense of Łojasiewicz [13, 14]
at a point x = x0 and thus the distribution f can be restricted to the hyperplane
Hx0 : (y, x0) , y ∈ Rn−1, and this is related to the wave front set [10] of f at Hx0 .
However we want to emphasize that, even if the value g (x0) does not exist for any x0,
the evaluation 〈f (y, x) , φ (y)〉y is always defined distributionally.

Naturally, if f belongs to a smaller space of distributions, say if f ∈ S ′ (Rn) , then
〈f (y, x) , φ (y)〉y will be defined not only for φ ∈ D

(
Rn−1) , but for φ ∈ S (Rn−1) ,

and, furthermore, the evaluation belongs to S ′ (R) . Partial distributional evaluations
involving linear manifolds of other dimensions can be handled similarly, as, for example,
evaluations of the type 〈f (y, x) , ϕ (x)〉x .

A particularly interesting situation arises when supp f is contained in an acute
cone.

Lemma 3.1. If f ∈ D′ (Rn) satisfies supp f ⊂ C0;w;α, where w = (0, 1) and where
0 < α < π/2, then one can perform the evaluation 〈f (y, x) , φ (y)〉y distributionally
for any φ ∈ E

(
Rn−1) , that is, for any smooth function φ defined in Rn−1.

Proof. This happens because in this case for each ϕ ∈ D (R) the distribution
〈f (y, x) , ϕ (x)〉x has compact support.

The next thing we would like to discuss has to do with the moments µk =〈
f (x) ,xk〉 of a distribution f ∈ D′ (Rn) , where k ∈ Nn, and where xk = xk1

1 · · ·xknn .
Naturally the moments of a general distribution of D′ (Rn) do not need to exist, but
they will if f has an appropiate decay at infinity, say if f has compact support, or,
more generally, if f ∈ K′ (Rn) 1). Suppose now that all the moments of a distribution
f vanish; is it true that f must also vanish as well? In general the answer is no, since it
is easy to find a function ρ ∈ S (Rn) such that

∫
Rn ρ (x) xkdx = 0 for all k ∈ Nn : we

just need to ask that 0 does not belong to the support of the Fourier transform ρ̂ 2).
On the other hand, if supp f is a compact set, then µk = 0 for all k ∈ Nn implies that
f = 0, since the polynomials are dense in E (Rn) . The following result on vanishing
moments would be useful for our analysis.

Lemma 3.2. Let f ∈ D′
(
Rn−1 × R

)
with supp f ⊂ C0;w;α, where w = (0, 1) and

where 0 < α < π/2. Suppose the distributional evaluation 〈f (y, x) ,ym〉y vanishes for
all m ∈ Nn−1 and for a < x < b. Then f = 0 in Rn−1 × (a, b) , that is, f (y, x) = 0
for a < x < b.

1) The space K′ (Rn) plays an important role in the asymptotic analysis of distributions [6].
2) Actually [4] given any sequence {µk}k∈Nn there exists a function λ ∈ S (Rn) such that∫

Rn λ (x) xkdx = µk for all k ∈ Nn, but in general no solution exists with suppλ compact.
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Proof. Indeed, if ϕ ∈ D (R) is a test function such that suppϕ ⊂ (a, b)
then 〈f (y, x) , ϕ (x)〉x has compact support and vanishing moments, and thus
〈f (y, x) , ϕ (x)〉x = 0. Notice that in this case 〈f (y, x) ,ym〉y is a well defined distri-
bution of x for any m because of the Lemma 3.1.

We shall denote by Rf the Radon transform of a function f, its integral over
hyperplanes. The hyperplanes can be parametrized by the pairs (θ, t) ∈ Sn−1 × R,
where Sn−1 is the unit sphere in Rn, and where (θ, t)→ H(θ,t), H(θ,t) = {x : x · θ = t} .
If f is a locally integrable function, this means that

(Rf) (θ, t) =
∫

H(θ,t)

f (x) dx, (3.2)

where dx is the measure on the hyperplane H(θ,t); naturally one needs growth re-
strictions at infinity for those integrals to exist. When f is a distribution its Radon
transform is defined by duality as explained in [15] and [16, Chpt. 10]3), but it is not
possible to define the Radon transform as an operator that sends all distributions of
S ′ (Rn) to ordinary distributions, since R (S ′ (Rn)) = (St (Rn))′, and the test function
space St (Rn) does not contain the standard test function space D (Rn) [15]. Some
locally integrable functions will have Radon transforms that are also locally integrable
functions and some distributions of S ′ (Rn) will have Radon transforms that belong
to D′ (Rn) , but not all of them do. The Radon transform of a given f –whether an
ordinary function or a distribution– will not exist, as a function or a distribution, for
all pairs (θ, t) , in general4).

We may also employ the idea of distributional evaluation along the family of
hyperplanes obtained as t varies to understand the Radon transform of a distribution
in the neighborhood of a given hyperplane; this is especially useful in certain geometric
circumstances. In the particular case when f ∈ D′

(
Rn−1 × R

)
with supp f ∩C0;w;π/2 ⊂

C0;w;α, where w = (0, 1) and where 0 < α < π/2, then (Rf) (w, t) will be defined for
t > 0 by distributional evaluation, as follows from Lemma 3.1 if φ (y) = 1 for all y;
actually in the case when f is a continuous function with supp f ∩C0;w;π/2 ⊂ C0;w;α,
then (Rf) (w, t) will be given by a convergent integral in (3.2) if t > 0. Similarly,
if supp f ⊂ C0 ∪ C1, where C1 is another acute cone such that C0 and C1 are in
position S, then (Rf) (θ, t) will be defined for θ in a neighborhood of w = (0, 1)
and t > 0.

4. THE TWO CONES SUPPORT THEOREM

Our main result is the following two cones support theorem.

3) Other equivalent definitions are also considered in [16].
4) The Radon transform of f will be defined for all (θ, t) for functions of rapid decay at infinity [17],

or as a standard distribution in all of Sn−1 × R for distributions of rapid decay [3], or if
f ∈ K′ (Rn) [5].
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Theorem 4.1. Let f ∈ S ′ (Rn) . Suppose there exist two cones C0 = Cv0;w0;α0 and
C1 = Cv1;w1;α1 in position S that satisfy the following conditions:

a) The Radon transform Rf vanishes outside C0;
b) supp f ⊂ C0 ∪ C1; and
c) The distribution of y ∈ H given as gb (y) = f (y+bw1) , where H is the hyperplane
{x ∈ Rn: x ·w1 = 0} , satisfies limb→∞ gb = 0 in the space E ′ (H) 5).

Then supp f ⊂ C0.

Proof. We shall first show that supp f ⊂ {x ∈ Rn: x ·w1 ≤ v0·w1} , by using the
following argument, that can be traced6) to [18], and also presented in [3]. Indeed, we
may suppose that w1 = (0, 1) , v1 = 0, so that H is just Rn−1, when we denote the
elements of Rn as (y, x) , y ∈ Rn−1, x ∈ R. Consider now the function

G (a, b) = 〈f (y,a · y + b) , 1〉y , (4.1)

for a ∈ Rn−1 and b ∈ R. Our hypotheses imply that there exists ε > 0 such that this
is an evaluation in E ′

(
Rn−1)× E (Rn−1) if |a| < ε and b > v0·w1, and in that case

G (a, b) = 0, (4.2)

since G (a, b) is actually equal to a constant, ca =
(

1 + |a|2
)−1/2

, times the Radon
transform Rf (θ, cab) , where θ = ca (−a, 1) . Thus if b > v0·w1, m ∈ Nn−1, |m| = M,

∂M

∂bM

(
〈f (y, b) ,ym〉y

)
=
〈
∂Mf

∂xM
(y, b) ,ym

〉
y

= ∂MG (a, b)
∂am1

1 · · · ∂amn−1
n−1

∣∣∣∣
a=0

= 0, (4.3)

so that 〈f (y, b) ,ym〉y is a distribution of the variable b that is a polynomial of degree
at most M − 1 in the interval (v0·w1,∞) ; but limb→∞ 〈f (y, b) ,ym〉y = 0, and hence
it follows that this distribution vanishes in that interval, that is, 〈f (y, b) ,ym〉y = 0
for b > v0·w1. We can now apply the Lemma 3.2 to conclude that f (y, b) = 0 for
b > v0·w1. It follows that supp f ⊂ C0 ∪K, where K is compact.

Finally we employ the Lemma 2.3 and the first part of the proof to conclude that
supp f ⊂ C0.

5. EXAMPLES

In this section we shall give several examples to show the limitations of our results.
Let us start with the fact that extra conditions are needed in any support theorem.

Indeed, it is known that there are harmonic functions defined in all of Rn whose Radon
transforms vanish everywhere: [20] in dimension 2, [1] in arbitrary dimensions. These

5) The relation limb→∞ gb = 0 can be understood in either the strong topology or in the weak
topology of E ′ (H) , since the convergent sequences for both topologies are the same [10,19]. In
the weak sense it means that limb→∞ 〈f (y+bw1) , ϕ (y)〉 = 0 for all ϕ ∈ E (H) .

6) The method in those references applies only to functions with compact support.
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examples do not belong to S ′ (Rn) , but examples of distributions of S ′ (Rn) whose
Radon transforms vanish outside of a given point are easy to construct; notice, for
example, that if n = 2 the Radon transform of f (z) = z−k, k = 2, 3, . . . vanishes on
all lines that do not contain the origin. Our first example uses analytic functions, too,
to construct a function that vanishes inside a cone C but whose Radon transform
vanishes outside of this cone.

Example 5.1. Let C be an acute closed cone in R2 ' C. Let f0 be a bounded analytic
function defined in C \C, continuous in C \C, and with limz→∞ z2f0 (z) = 0. Extend
f0 to f defined in all C by putting f (z) = 0 if z ∈ C. Then the Radon transform of f
vanishes outside of the cone C, but supp f ⊂ C \ C.

The next example shows why the cone needs to be acute.

Example 5.2. Let φ ∈ D
(
Rn−1) with

∫
Rn−1 φ (y) dy = 0, and let ϕ ∈ D (R) be

such that suppϕ " (−∞, 0]. Then f (y, x) = φ (y)ϕ (x) satisfies the hypotheses of
the Theorem 4.1 with C0 = C0;−w1;π/2, w1 = (0, 1) , and appropiate C1 = Cv1;w1;α1 .
However, of course, supp f " C0.

The next example shows that f has to vanish in the direction of the axis of the
cone C1.

Example 5.3. Let
S (x) = H

(
1− x2) sgn x, (5.1)

where H is the Heaviside function, so that H
(
1− x2) is the characteristic function of

(−1, 1) . Consider Rn as Rn−1 × R, and the function f defined in Rn−1 × R as

f (y1, . . . , yn−1, x) = S (y1) · · ·S (yn−1) . (5.2)

Then for any α, 0 < α < π/2, if w1 = (0, 1) , v1 = (0,−v) , with v large enough, and
C0 = C0;−w1;α, C1 = Cv1;w1;α, then the cones are in position S, the Radon transform
Rf vanishes outside C0, supp f ⊂ C0 ∪ C1, but, by construction, supp f " C0.

Observe that in the example 5.3 one can use other odd functions S, such as, for
example, the limit case S (x) = δ′ (x) .

REFERENCES

[1] D.H. Armitage, M. Goldstein, Nonuniqueness for the Radon transform, Proc. Amer.
Math. Soc. 117 (1993), 175–178.

[2] J. Boman, Holmgren’s uniqueness theorem and support theorems for real analytic Radon
transforms, Contemp. Math. 140 (1992), 23–30.

[3] J. Boman, F. Lindskog, Support theorems for the Radon transform and Cramér-Wold
theorems, J. Theor. Probab. 22 (2009), 683–710.

[4] R. Estrada, Vector moment problems for rapidly decreasing functions of several variables,
Proc. Amer. Math. Soc. 126 (1998), 761–768.



A two cones support theorem 213

[5] R. Estrada, Support theorems for Radon transforms of oscillatory distributions, Krugu-
jevac J. Math. 39 (2015), 197–205.

[6] R. Estrada, R.P. Kanwal, A distributional approach to Asymptotics. Theory and Appli-
cations, 2nd ed., Birkhäuser, Boston, 2002.

[7] R. Estrada, B. Rubin, Null spaces of Radon transforms, preprint 2015, arXiv:1504.03766.

[8] S. Helgason, The Radon transform in Euclidean spaces, compact two-point homogeneous
spaces and Grassman manifolds, Acta Math. 113 (1965), 153–180.

[9] S. Helgason, Geometric Analysis on Symmetric Spaces, Amer. Math. Soc., Providence,
2008.

[10] L. Hörmander, The Analysis of Partial Differential Operators, vol. 1, Distribution Theory
and Fourier Analysis, Springer Verlag, Berlin, 1983.

[11] J. Horváth, Topological Vector Spaces and Distributions, vol. I, Addison-Wesley, Reading,
Massachusetts, 1966.

[12] D. Ludwig, The Radon transform on Euclidean space, Comm. Pure Appl. Math. 19
(1966), 49–81.

[13] S. Łojasiewicz, Sur la valuer et la limite d’une distribution en un point, Studia Math.
16 (1957), 1–36.

[14] S. Łojasiewicz, Sur la fixation de variables dans une distribution, Studia Math. 17 (1958),
1–64.

[15] A.G. Ramm, Radon transform on distributions, Proc. Japan Acad. 71 (1995), 202–206.

[16] A.G. Ramm, A.I. Katsevich, The Radon Transform and Local Tomography, CRC Press,
Boca Raton, 1996.

[17] B. Rubin, Introduction to Radon transforms (with elements of fractional calculus and
harmonic analysis), Cambridge University Press, 2015 (to appear).

[18] R.S. Strichartz, Radon inversion – variation on a theme, Am. Math. Mon. 89 (1982),
377–384.

[19] F. Trèves, Topological Vector Spaces, Distributions, and Kernels, Academic Press, New
York, 1967.

[20] L. Zalcman, Uniqueness and nonuniqueness for the Radon transform, Bull. London
Math. Soc. 14 (1982), 241–245.

Ricardo Estrada
restrada@math.lsu.edu

Department of Mathematics
Louisiana State University
Baton Rouge, LA 70803, U.S.A.

Received: July 3, 2015.
Revised: September 18, 2015.
Accepted: October 11, 2015.


