PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorptive removal of pentachlorophenol from aqueous solutions using powdered eggshell

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Adsorpcja pentachlorofenolu na skorupkach jaj
Języki publikacji
EN
Abstrakty
EN
The usefulness of untreated powdered eggshell as low-cost adsorbent for the removal of pentachlorophenol (PCP) from aqueous solutions was investigated. The most important parameters affecting the adsorption process, including the pH and ionic strength, were examined. The adsorption characteristics of PCP onto eggshell were evaluated in terms of kinetic and equilibrium parameters. The kinetic data were studied in terms of the pseudo- -first order, pseudo-second order and intra-particle diffusion kinetic models. The equilibrium data were analyzed using the Langmuir, Freundlich, Sips and Redlich-Peterson isotherm models. The pseudo-second order model best described the adsorption kinetics. Using the Langmuir equation, the monolayer adsorption capacity of eggshell for PCP was found to be 0.127 mg/g. The results showed that PCP can be effectively removed from aqueous solution employing eggshell as a cheap adsorbent.
PL
Dokonano oceny przydatność niemodyfikowanych skorupek jaj jako taniego adsorbentu do usuwania pentachlorofenolu (PCP) z roztworów wodnych. Zbadano najważniejsze parametry mające wpływ na proces adsorpcji, między innymi wpływ pH oraz siły jonowej roztworu. Zbadano zarówno kinetykę adsorpcji PCP jak i adsorpcję równowagową. Do opisu kinetyki zastosowano równania kinetyczne pseudo-pierwszego i pseudo-drugiego rzędu oraz model dyfuzji wewnątrzcząstkowej. Izotermy adsorpcji były analizowane za pomocą równań Langmuira, Freundlicha, Sipsa oraz Redlicha-Petersona. Kinetyka adsorpcji PCP na skorupkach jaj przebiegała zgodnie z modelem pseudo-drugiego rzędu. Maksymalna pojemność adsorpcyjna skorupek jaj w stosunku do PCP, wyznaczona na podstawie równania izotermy Langmuira, wynosiła 0,127 mg/g. Wyniki badań pokazały, że skorupki jaj są interesującym adsorbentem do usuwania pentachlorofenolu z roztworów wodnych.
Rocznik
Strony
10--16
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Military University of Technology, Poland, Institute of Chemistry
  • Military University of Technology, Poland, Institute of Chemistry
  • Military University of Technology, Poland, Institute of Chemistry
autor
  • University of Technology, Kielce, Poland, Faculty of Environmental Engineering, Geomatics and Power Engineering
Bibliografia
  • [1]. Abdel Salam, W. & Burk, R.C. (2010). Thermodynamics and kinetics studies of pentachlorophenol adsorption from aqueous solutions by multi-walled carbon nanotubes, Water, Air, & Soil Pollution, 210, pp. 101-111.
  • [2]. Abdel-Ghani, N.T., El-Chaghaby, G.A. & Zahran, E.M. (2015). Pentachlorophenol (PCP) adsorption from aqueous solution by activated carbons prepared from corn wastes, International Journal of Environmental Science and Technology, 12, pp. 211-222.
  • [3]. Ali, I., Asim, M. & Khan, T.A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater, Journal of Environmental Management, 113, pp. 170-183.
  • [4]. Bras, I., Lemos, L., Alves, A. & Pereira, M.F.R. (2005). Sorption of pentachlorophenol on pine bark, Chemosphere, 60, pp. 1095-1102.
  • [5]. Carvalho, J., Araujo, J. & Castro, F. (2011). Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshell waste: An overview, Waste and Biomass Valorization, 2, pp. 157-167.
  • [6]. Chowdhury, S. & Saha, P.D. (2012). Utilization of a domestic waste - eggshells for removal of hazardous Malachite Green from aqueous solutions, Environmental Progress & Sustainable Energy, 31, 3, pp. 415-425.
  • [7]. Chowdhury, S., Chakraborty, S. & Saha, P.D. (2013). Removal of Crystal Violet from aqueous solution by adsorption onto eggshells: equilibrium, kinetics, thermodynamics and artificial neural network modeling, Waste and Biomass Valorization, 4, pp. 655-664.
  • [8]. Czaplicka, M. (2004). Sources and transformations of chlorophenols in the natural environment, Science of the Total Environment, 322, pp. 21-39.
  • [9]. Daraei, H., Mittal, A., Noorisepehr, M. & Daraei, F. (2013). Kinetic and equilibrium studies of adsorptive removal of phenol onto eggshell waste, Environmental Science and Pollution Research, 20, pp. 4603-4611.
  • [10]. Dmitruk, U., Zbieć, E. & Dojlido, J. (2006). Occurence and assay of chlorophenols in aquatic environment, Ochrona Środowiska, 28(3), pp. 25-28. (in Polish)
  • [11]. Estevinho, B.N., Martins, I., Ratola, N., Alves, A. & Santos, L. (2007). Removal of 2,4-dichlorophenol and pentachlorophenol from waters by sorption using coal fly ash from a Portuguese thermal power plant, Journal of Hazardous Materials, 143, pp. 535-540.
  • [12]. Estevinho, B.N., Ratola, N., Alves, A. & Santos, L. (2006). Pentachlorophenol removal from aqueous matrices by sorption with almond shell residues, Journal of Hazardous Materials, B137, pp. 1175-1181.
  • [13]. Flores-Cano, J.V., Leyva-Ramos, R., Mendoza-Barron, J., Guerrero-Coronado, R.M., Aragón-Pina, A. & Labrada-Delgado, G.J. (2013). Sorption mechanism of Cd(II) from water solution onto chicken eggshell, Applied Surface Science, 276, pp. 682-690.
  • [14]. Guru, P.S. & Dash, S. (2014). Sorption on eggshell waste - A review on ultrastructure, biomineralization and other applications, Advances in Colloid and Interface Science, 209, pp. 49-67.
  • [15]. Ho, Y.S. & McKay, G. (1999). Pseudo-second-order model for sorption processes, Process Biochemistry, 34, pp. 451-465.
  • [16]. Koumanova, B., Peeva, P., Allen, S.J., Gallagher, K.A. & Healy, M.G. (2002). Biosorption from aqueous solutions by eggshell membranes and Rhizopus oryzae: equilibrium and kinetic studies, Journal of Chemical Technology and Biotechnology, 77, pp. 539-545.
  • [17]. Kuśmierek, K. & Świątkowski, A. (2015). The influence of an electrolyte on the adsorption of 4-chlorophenol onto activated carbon and multi-walled carbon nanotubes, Desalination and Water Treatment, 56, pp. 2807-2816.
  • [18]. Lagergren, S. (1898). The theory of so-called adsorption of soluble substances, Vetenskapsakademien Handlingar, 24, pp. 1-39.
  • [19]. Law, W.M., Lau, W.N., Lo, K.L., Wai, L.M. & Chiu, S.W. (2003). Removal of biocide pentachlorophenol in water system by the spent mushroom compost of Pleurotus pulmonarius, Chemosphere, 52, pp. 1531-1537.
  • [20]. Leyva-Ramos, R., Bernal-Jacome, L.A., Mendoza-Barron, J. & Hernandez-Orta, M.M.G. (2009). Kinetic modeling of pentachlorophenol adsorption onto granular activated carbon, Journal of the Taiwan Institute of Chemical Engineers, 40, pp. 622-629.
  • [21]. Mathialagan, T. & Viraraghavan, T. (2009). Biosorption of pentachlorophenol from aqueous solutions by a fungal biomass, Bioresource Technology, 100, pp. 549-558.
  • [22]. Michałowicz, J. (2005). The occurrence of chlorophenols, chlorocatechols and chlorinated methoxyphenols in drinking water of the largest cities in Poland, Polish Journal of Environmental Studies, 14, pp. 327-333.
  • [23]. Michałowicz, J., Stufka-Olczyk, J., Milczarek, A. & Michniewicz, M. (2011). Analysis of annual fluctuations in the content of phenol, chlorophenols and their derivatives in chlorinated drinking waters, Environmental Science and Pollution Research, 18, pp. 1174-1183.
  • [24]. Oke, I.A., Olarinoye, N.O. & Adewusi, S.R.A. (2008). Adsorption kinetics for arsenic removal from aqueous solutions by untreated powdered eggshell, Adsorption, 14, pp. 73-83.
  • [25]. Proudfoot, A.T. (2003). Pentachlorophenol poisoning, Toxicological Reviews, 22, pp. 3-11.
  • [26]. Rangabhashiyam, S., Anu, N., Giri Nandagopal, M.S. & Selvaraju, N. (2014). Relevance of isotherm models in biosorption of pollutants by agricultural byproducts, Journal of Environmental Chemical Engineering, 2, pp. 398-414.
  • [27]. Tsai, W.T., Yang, J.M., Lai, C.W., Cheng, Y.H., Lin, C.C. & Yeh, C.W. (2006). Characterization and adsorption properties of eggshells and eggshell membrane, Bioresource Technology, 97, pp. 488-493.
  • [28]. Viraraghavan, T. & Slough, K. (1999). Sorption of pentachlorophenol on peat-bentonite mixtures, Chemosphere, 39, 9, pp. 1487-1496.
  • [29]. Weber, Jr., W. & Morris, J. (1963). Kinetics of adsorption on carbon from solution, Journal of the Sanitary Engineering Division, 18, pp. 31-42.
  • [30]. Zulfikar, M.A. & Setiyanto, H. (2013). Study of the adsorption kinetics and thermodynamic for the removal of Congo Red from aqueous solution using powdered eggshell, International Journal of ChemTech Research, 5, 4, pp. 1671-1678.
  • [31]. Zulfikar, M.A., Mariske, E.D. & Djajanti, S.D. (2012). Adsorption of lignosulfonate compounds using powdered eggshell, Songklanakarin Journal of Science and Technology, 34, 3, pp. 309-316.
  • [32]. Zulfikar, M.A., Novita, E., Hertadi, R. & Djajanti, S.D. (2013). Removal of humic acid from peat water using untreated powdered eggshell as a low cost adsorbent, International Journal of Environmental Science and Technology, 10, pp. 1357-1366.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8bf28b7-7876-470b-b9f9-8d059b2ce0ce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.