PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Key fault propagation path identification of CNC machine tools based on maximum occurrence probability

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to revise the deviation caused by ignoring the dynamic character of fault propagation in traditional fault propagation path identification methods, a method based on the maximum occurrence probability is proposed to identify the key fault propagation path. Occurrence probability of fault propagation path is defined by dynamic importance, dynamic fault propagation probability and fault rate. Taking the fault information of CNC machine tools whichsubject to Weibull distribution as an example, this method has been proven to be reasonable through comparative analysis. Result shows that the key fault propagation path of CNC machine tools is not unique, but changes with time. Before 1000 hours, key fault propagation path is electrical component (E) to mechanical component (M); after 1000 hours, key fault propagation path is auxiliary component (A) to mechanical component (M). This change should be taken into account when developing maintenance strategies and conducting reliability analysis.
Rocznik
Strony
art. no. 169887
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Key Laboratory of CNC Equipment Reliability, Ministry of Education, Changchun 130022
  • School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
autor
  • Key Laboratory of CNC Equipment Reliability, Ministry of Education, Changchun 130022
  • School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
autor
  • China FAW Group Co., LTD. NEV Inst., China
  • Key Laboratory of CNC Equipment Reliability, Ministry of Education, Changchun 130022
  • School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
autor
  • Key Laboratory of CNC Equipment Reliability, Ministry of Education, Changchun 130022
  • School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
Bibliografia
  • 1. Brin S, Page L. The anatomy of a large-scale hypertextual Web search engine. Computer Networks 2012;56(18): 3825-3833, https://doi.org/10.1016/j.comnet.2012.10.007.
  • 2. Chen Y F, Zhang G B, Ran Y. Risk Analysis of Coupling Fault Propagation Based on Meta-Action for Computerized Numerical Control (CNC) Machine Tool. Complexity 2019; 2019: 1-11, https://doi.org/10.1155/2019/3237254.
  • 3. Dey P, Mehra R, Kazi F, et al. Impact of topology on the propagation of cascading failure in power grid. IEEE Transactions onSmart Grid 2016;7(4):1970-1978, http://doi.org/10.1109/TSG.2016.2558465.
  • 4. Durga R K, Gopika V, Sanyasi R, et al. Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliability Engineering and System Safety 2009;94(4): 872-883, https://doi.org/10.1016/j.ress.2008.09.007.
  • 5. Emre Y, Brian J G, Amy R P. Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees. Reliability Engineering & System Safety 2023; 230:108873, https://doi.org/10.1016/j.ress.2022.108873 .
  • 6. Gao Y Y, Yu D J. Intelligent fault diagnosis for rolling bearings based on graph shift regularization with directed graphs. Advanced Engineering Informatics 2021; 47: 101253, https://doi.org/10.1016/j.aei.2021.101253.
  • 7. Guo R X, Wang Z H. A framework for modeling fault propagation paths in air turbine starter based on Bayesian network. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2022;236(6): 1078-1095, https://doi.org/10.1177/1748006X211052732.
  • 8. He H T, Shan C, Tian X M. Analysis on Influential Functions in the Weighted Software Network. Security and Communication networks 2018;2018:15-25, https://doi.org/10.1155/2018/1525186.
  • 9. Hou Z, Yu Z H. Two‐layer model of equipment fault propagation in manufacturing system. Quality and Reliability Engineering International 2021,37(2),743-762, https://doi.org/10.1002/qre.2761.
  • 10. Huber W. On the use of the correlation coefficient r for testing the linearity of calibration functions(Review). Accreditation and Quality Assurance 2004; 9: 11-12, https://doi.org/10.1007/s00769-004-0854-6.
  • 11. Kazemi M. G, Montazeri M. A new robust fault diagnosis approach based on bond graph method. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2017; 39(11): 4353–4365, https://doi.org/10.1007/s40430-017-0906-6.
  • 12. Lei M L, Kang H C. Node influence ranking in complex networks: A local structure entropy approach. Chaos, Solitons & Fractals2022;160:112136, https://doi.org/10.1016/j.chaos.2022.112136.
  • 13. Li J F, Li Y L, Wen S T, et al. A novel method of key meta-action unit integrated identification for CNC machine tool reliability. Computers & Industrial Engineering 2023; 177: 109073, https://doi.org/10.1016/j.cie.2023.109073.
  • 14. Liu Y K, Wu G H, Xie C L, et al. A fault diagnosis method based on signed directed graph and matrix for nuclear power plants.Nuclear Engineering and Design 2016; 297(1): 166–174, https://doi.org/10.1016/j.nucengdes.2015.11.016.
  • 15. Mamdikar M R, Kumar V, Singh P. Dynamic reliability analysis framework using fault tree and Dynamic Bayesian Network: A case study of NPP. Nuclear Engineering and Technology 2021; https://doi.org/10.1016/j.net.2021.09.038.
  • 16. Qiu S Q, Ming X G. Explicit and implicit Bayesian Network-based methods for the risk assessment of systems subject to probabilistic common-cause failures. Computers in Industry 2020; 123: 103319, https://doi.org/10.1016/j.compind.2020.103319.
  • 17. Raymond R. A novel method for fault tree uncertainty analysis using error propagation methods. Process Safety Progress 2021;40(3):50-62, https://doi.org/10.1002/prs.12219.
  • 18. Samsudeen S S, Muthulakshmi I. Weighted PageRank Algorithm Search Engine Ranking Model for Web Pages. Intelligent Automation & Soft Computing 2023;36(1): 183-192, https://doi.org/10.32604/iasc.2023.031494.
  • 19. Shen G X, Jia Y Z, Ma J, et al. CNC machine tool failure analysis and reliability. China Mechanical Engineering 1996; 7: 67-69.
  • 20. Sutapa S, Biplab K S, Mousumi S. Cellular automata based multi-bit stuck-at fault diagnosis for resistive memory. Frontiers of Information Technology & Electronic Engineering 2022;23(7):1110-1126, http://doi.org/10.1631/FITEE.2100255.
  • 21. Tian W D, Zhang S F, Cui Z, et al. A Fault Identification Method in Distillation Process Based on Dynamic Mechanism Analysis and Signed Directed Graph. Processes 2021;9(2): 229, https://doi.org/10.3390/pr9020229.
  • 22. Walid A, Fuad S A. Estimating Weibull Parameters Using Least Squares and Multilayer Perceptron vs. Bayes Estimation. Computers, Materials& Continua 2022;71(2):4033-4050, https://doi.org/10.32604/cmc.2022.023119.
  • 23. Wang T, Wei X G, Huang T, et al. Cascading Failures Analysis Considering Extreme Virus Propagation of Cyber-Physical Systems in Smart Grids. Complexity 2019; 2019: 1-15, http://doi.org/10.1155/2019/7428458.
  • 24. Wang Y H, Li M, Shi H. A method of searching fault propagation paths in mechatronic systems based on MPPS model. Journal of Central South University 2018; 25(9): 2199–2218, https://doi.org/10.1007/s11771-018-3908-3.
  • 25. Wang Z, Hu YY, Dong R, et al. Determination of the risk propagation path of cascading faults in chemical material networks based on complex networks. The Canadian Journal of Chemical Engineering 2021;99(sp1): S540-S550, https://doi.org/10.1002/cjce.24011.
  • 26. Wu J N, YanS Z, Gao R X. Modeling and analysis of failure propagation of mechanical system with multi-operation states using high-level Petri net. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability 2021; 228(4): 347-361,https://doi.org/10.1177/1748006X13519621.
  • 27. Yang F, Xiao D Y, Shah S L. Signed directed graph-based hierarchical modelling and fault propagation analysis for large-scale systems. Iet Control Theory and Applications 2013;7(4):537-550, https://doi.org/10.1049/iet-cta.2010.0660.
  • 28. You D Z, Pham H. Reliability Analysis of the CNC System Based on Field Failure Data in Operating Environments. Quality and Reliability Engineering International 2016;32(5): 1955-1963, https://doi.org/10.1002/qre.1926.
  • 29. Zhang T, Huang H Z, Li Y, et al. Hierarchical fault propagation of command and control system. Smart Structures and Systems 2022; 29(6): 791-797, https://doi.org/10.12989/sss.2022.29.6.791.
  • 30. Zhang X G, Li Y L, Zhang G B, Liu S, et al. An early fault elimination method of computerized numerical control machine tools. The International Journal of Advanced Manufacturing Technology 2020;106: 5049-5059, https://doi.org/10.1007/s00170-020-04956-0.
  • 31. Zhang Y Z, Liu J T, Shen G X. Failure propagation mechanism analysis of CNC lathe. Journal of Harbin Institute of Technology. 2018, 50(7), 131–136.
  • 32. Zhao C, Li N, Fang D P. Criticality assessment of urban interdependent lifeline systems using a biased PageRank algorithm anda multilayer weighted directed network model. International Journal of Critical Infrastructure Protection 2018, 22: 100-112, https://doi.org/10.1016/j.ijcip.2018.06.002.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8bb7e5e-bc26-4912-a35a-bb37693b7da9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.