
 201

production planning, waiting-free schedules design, constraint logic programming

Robert WÓJCIK*, Grzegorz BOCEWICZ**

CP APPROACH TO DESIGN OF STEADY-STATE FLOW
OF REPETITIVE MANUFACTURING PROCESSES IN SME

Abstract

Concurrent execution of work orders in the small and medium size enterprises
(SME) imposes a necessity to consider many control problems concerning
systems of repetitive concurrent manufacturing processes using common
resources in mutual exclusion. In many cases a production system with a given
structure of the processes resource requests can be seen as composed of
subsystems with n cyclic processes sharing one resource. For given sets of
possible values of the processes operation execution times a problem of finding
schedules guaranteeing that no process waits for access to the common
resources is considered. In particular for the assigned times of the operations
execution a subproblem of finding all possible starting times of work orders
execution for which waiting-free schedules exist has been formulated as
a constraint programming (CP) problem. The starting times derived can be used
as an alternative starting times of work orders execution in case of their possible
delays. A state space of the problem’s solutions has been reduced using
constraints based on the necessary and sufficient conditions for existence of
a waiting-free n-process steady-state schedule. An illustrative example of
Mozart-based software application to the solution of constraint logic
programming problem considered has been presented.

1. INTRODUCTION

Planning production flow in small and medium size enterprises (SMEs) with concurrently
executed processes using common resources in mutual exclusion requires solving a problem of
resource conflicts resolution [3, 6, 9]. A solution of this problem is the best schedule taking
into account certain evaluation criterion, defining an order of using the resources, e.g.
machines, stores, tools, by the processes and guaranteeing deadlock-free and starvation-free
execution of the processes.

Processing a batch of workpieces according to a given production route, defining
a sequence of operations (activities) required for completion of the final order, creates
a repetitive production process. Each operation in the route is using one production resource

* Ph. D., Wrocław University of Technology, Institute of Informatics, Automatics and Robotics, 50-372 Wrocław,

Poland, e-mail: robert.wojcik@pwr.wroc.pl
** M.Sc., Technical University of Koszalin, Department of Electronics and Informatics, 75-453 Koszalin, Poland,

e-mail: banaszak@tu.koszalin.pl

 202

for a certain amount of time defined by the time-restricted resource availability. Assuming that
the following workpiece is introduced to the system after finishing the previous one the cyclic
process is created with a cycle time equal to the sum of the operation times specified in the
executed production route. In case when several orders are processed at the same time the
production system can be seen as a system of concurrent cyclic processes sharing resources in
mutual exclusion [2, 3].

A steady-state behaviour of the processes has to be analysed in order to find a feasible
schedule that meets the constraints imposed by the precedence relations of the operations and
by the time-restricted resources availability as well as other constraints imposed on the
processes execution, e.g. no waiting for the resources availability, or assumed orders
completion time.

The increased requirements concerning the time necessary to design of production plan
implies a need to apply methods and tools which can be used for rapid prototyping of
alternative ways of manufacturing processes execution [6, 12]. The method presented in this
work uses Constraint Logic Programming (CLP) approach to support a production plan
designing [14, 16, 17]. The proposed model of the system of cyclic concurrent processes
consists of a set of constraints that describe certain relations between decision variables.
Because of their declarative character the constraints can be implemented in a software
decision support systems, e.g. Ilog, Mozart [4, 13, 15].

2. PROBLEM STATEMENT

Consider a manufacturing system providing a set of resources shared by some work orders.
A given production order is specified by the production routes defining the sequences of the
operations (activities) executed on the system resources. Each operation can use a resource
during a certain amount of time specified by the time-restricted resource availability. The
operations are using the shared resources in mutual exclusion. Each activity may not be
preempted and the resource once selected to complete the operation may not be changed [12].

Parallel execution of workpieces according to a given routes specifying certain work orders
creates a set of repetitive concurrent processes. A structure of the processes resource requests
guarantees that no deadlock state is possible in the system [2, 3, 9]. This type of systems in
many cases can be seen as composed of subsystems consisting of several processes sharing one
resource. Assuming a given allocation of the processes operation times the problem consists in
finding a feasible steady-state schedule with no process waiting for access to the resources that
fulfils the constraints imposed by the precedence relations and by the time-constrained
resources availability. In particular for a given system of n cyclic processes sharing a resource
and fixed operation times the problem of finding the starting times of the processes execution
for which a waiting-free schedule exists is considered [11, 12]. These times can be seen as an
alternative starting times of the production tasks in case of possible delays in work orders
execution. Assuming that the operation times can be chosen from the bounded set of discrete
values solving the problem is equivalent to design a production schedule with the following
properties:
− The processes will never wait for access to the resources;
− The initial state of the system, defined by starting times of production tasks, belongs to the

system’s cyclic steady-state;
− The system’s cycle time is equal to the least common multiple of cycle times of the

processes.

 203

A model based on modulus equations presented in [10, 11] will be used to solve the
problem of finding a waiting-free schedule for the n-process system. The model defines a set of
constraints on starting times of the processes, which guarantee existence of a waiting-free
schedule. Searching solutions of the formulated constraint satisfaction problem (CSP) is
equivalent to finding a feasible waiting-free schedule (a set of schedules) for a given system of
processes, i.e. a schedule that meets a set of constraints which link decision variables
describing a given problem. The constraints defined by the CSP can be implemented as
a computer program designed in constraint logic programming (CLP) language Oz [4, 11],
which allows solving the problem using its predefined searching procedures based on interval
analysis and reduction of domain of decision variables [7, 14, 16]. For the operations times
given the constraint programming method proposed allows finding all possible solutions, i.e.
a set of all starting times of the processes for which a waiting-free schedules exist, or find the
specific solution, e.g. the first solution fulfilling a certain criterion (if exists).

3. SYSTEM OF PROCESSES

A system of repetitive manufacturing processes consists of a set of processes sharing
common resources in mutual exclusion; see Fig. 1. Each process Pi, (i=1,2,...,n), representing
one product processing, executes periodically a sequence of the operations using resources
defined by Zi = (Ri1, Ri2, ..., Ril(i)), where l(i) denotes a length of production route. The
operations times are given by a sequence ZTi = (ri1, ri2, ..., ril(i)), where ri1, ri2, ..., ril(i)∈N are
defined in the uniform time units (N – set of natural numbers). For instance the system shown
in Fig.1 consists of ten resources and seven processes. The resources R1, R2, R3, R4 are shared
ones, since each one is used by at least two processes, and the resources R5, R6, R7, R8, R9, R10
are non-shared because each one is exclusively used by only one process. The processes P1, P2,
P3, P4, P5, P6, P7 are executing operations using resources given by the sequences, respectively:
Z1 = (R1, R7), Z2 = (R1, R6), Z3 = (R1, R5), Z4 = (R1, R2, R3, R4), Z5 = (R2, R8), Z6 = (R3, R9) and Z7
= (R4, R10). The system considered can be seen as composed of four subsystems each one with
n cyclic processes sharing a single resource. The n-process subsystems are defined as follows:
subsystem S1 = (P1, P2, P3, P4) – the processes are sharing resource R1; subsystem
S2 = (P4, P5) – the processes are sharing resource R2; subsystem S3 = (P4, P6) – the processes are
sharing resource R3; subsystem S4 = (P4, P7) - the processes are sharing resource R4. Because
the n-process subsystems have no common resources it is possible to analyse their behaviour
separately to find the initial resource allocation times of the processes for which waiting-free
schedules exist. The schedules designed for each subsystem can be joined together to obtain
a waiting-free schedule for the whole system.

The n-process system (P1,...,Pi,...,Pj,..., Pn) consists of n cyclic processes sharing a single
resource, e.g. subsystem of processes S1 = (P1, P2, P3, P4) sharing resource R1 shown in Fig.1.
Each process Pi (i=1,2,...,n) executes periodically a sequence of the operations using resources
defined by Zi = (R, Oi), where R denotes a shared resource used by the processes and Oi denotes
a non-shared resource used by process Pi. The operations times are given by a sequence ZTi =
(ri, oi), where ri – time of using shared resource, oi - time of using non-shared resource, and ri,
oi ∈N. A cycle time of Pi is defined by relation ci = ri + oi. For instance in the subsystem S1 =
(P1, P2, P3, P4) (Fig.1) the shared resource R=R1, the resources R2, R3, R4 are represented by the
non-shared resource O4, the resources O1=R7, O2=R6, O3=R5.

The first operation executed by each processes (the sequence Zi always begins with shared
resource R) can be initiated at different times in relation to time tp=0. In the following it will be

 204

assumed that one of the processes, e.g. the process with the greatest cycle time, always starts at
time tp=0 and the other processes start at times t ≥ tp. It was shown [10, 11] that behaviour of
the n-process system depends on the operation times and starting times (phases) of the
component processes. The system’s dynamics can be analysed taking into account dynamics of
each 2-process subsystem [1, 2]. In the following some results used to solve the problem of
waiting-free schedule design will be recalled.

Fig.1. System of repetitive manufacturing processes with concurrency: P1, P2, P3, P4, P5, P6, P7
– processes; R1, R2, R3, R4, R5, R6, R7, R8, R9, R10 – resources

4. MODELLING DYNAMICS

A natural model for behaviour analysis of discrete processes with periodicity is modulus
algebra [5, 8]. Using its properties it is possible to design recurrent module equations defining
times of any process resource request in relation to a chosen process request and to find
conditions guaranteeing waiting-free execution of the n-process system.

4.1. Basic properties of modulus algebra

It is known that for any integer a∈Z and any p∈N (p>0) the following relation holds:

a = wp + r (1)

A number w∈Z is a quotient and number r∈Z & 0≤ r< p is a remainder [8]. The
representation (1) is unique since for a given p it is w = a div p and r = a – wp = a mod p (div -
integer division; mod - modulus operator).

R 5 R 1 R 6 R 7

R 2

R 3

R 4

R 9

R 8

R 10

P 4

P 5

P 3

P 2
P 1

P 6

P 7

 205

Two integers a,b∈Z are considered modulus p∈N equal if a = b + kp and k∈Z. This special
equality is called ”congruence”. It would be said that a and b are congruent (module equal)
with respect to p. Congruence is defined with respect to a given p, and any and all values of
k∈Z. A modular equality of a and b is written as a = b (mod p) or a ≡ b (mod p). Two integers
a,b∈Z congruent with respect to p, divided by p, have the same remainder 0≤ r<p. This follows
from relations a = wp + r & a = b + kp, hence b = wp – kp + r = (w–k)p + r. The last property
can be written using mod operator: r = a mod p = b mod p. It can also be noticed that:

∀a∈Z & ∀p∈N if 0 ≤ a < p, then a mod p = a (2)

For the n-process system the modulus algebra can be used to derive shifts between times of
resource requests of any process and the nearest resource allocation times of a chosen process.
The shifts will be used as local starting times of the processes.

4.2. Local starting times of the processes

Consider a system of processes (P1,...,Pi,...,Pj,..., Pn) sharing a single resource (Fig. 1). Let
xi(k)∈N∪{0}, where k=0,1,2,3,..., denote times at which a process Pi, where i∈{1,2,...,n},
requests access to the shared resource and ai(k)∈N∪{0} times at which it receives access to the
resource. There is 0 ≤ xi(k) ≤ ai(k) and it is assumed that a starting time of a chosen process Pi
(time starting of work order Pj) is equal to xi(0) = 0 and a starting time of any process Pj, where
j≠i is such that xj(0) ≥ 0.

Assuming that the processes are executed independent each other (no resource sharing)
subsequent resource requesting times xi(k) are equal to the allocation times ai(k) and can be
calculated according to the equation xi(k+1) = ai(k+1) = ai(k) + ci (Fig.2). Therefore, xi(k) =
ai(k) = ai(0) + k∗ci. In case of concurrent execution of processes the relevant formula has to
take into account a waiting time wi(k). Hence, ai(k+1) = xi(k+1) + wi(k) = ai(k) + ci + wi(k).
A parameter tij(l)∈N∪{0}, where l=0,1,2,…, defines distance between a resource request time
xj(l) of the process Pj and the nearest resource allocation time ai(k) ≤ xj(l) of the process Pi. The
shift tij(l) can be used as a local starting time of Pj in relation to resource allocation time of Pi
(see Fig. 2).

ri oi

t
ai(k) ai(k)+ci rj oj

tij(l)

xj(l) xj(l)+cj

Fig.2. Resource request/allocation times

Previous research showed that for any 2-process subsystem (Pi, Pj) of the n-process system,

where i≠j & i,j∈{1,2,...,n}, it is possible to derive values tij(l), l=0,1,2,..., using recurrent
modulus equations [10, 11]. In case when each process execution is independent to the others

 206

then resource request times are equal to resource allocation times, i.e. xj(l)=aj(l) . Therefore,
times tij(l) can be calculated from the equation:

tij(l) = xj(l) mod ci = aj(l) mod ci = [aj(0) + lcj] mod ci & (3)
 & tij(l)∈[0,ci) & ai(0)=0 & aj(0)≥0

It can be proven [10, 11] that for independent execution of the processes (no resource

sharing) resource request times of process Pj, calculated in relation to resource allocation times
of process Pi, can occur only at local times tij(l)∈[0,ci) (3) given by formula:

tij(l) = aj(l) mod ci = fij(l)Dij + yij(l) & l=0,1,2,... (4)

where Dij=Dji=g.c.d.(ci,cj) & ci=Dijmij & cj=Djimji & g.c.d.(mij,mji)=1 & mij,mji∈N &

& fij(l)=[fij(0) + lmji] mod mij & yij(l)=yij(0) &
& tij(0)=aj(0) mod ci & fij(0)= tij(0) div Dij & yij(0)=tij(0) mod Dij &
& 0≤ fij(0)<mij & 0≤ yij(0)<Dij & g.c.d. – the greatest common divisor.

Let Wij={0,1,...,mij-1}. From fij(l)= [fij(0) + lmji] mod mij (4) it follows that a range of fij(l) is

such that fij(l)∈Wij. It can be shown [10] that fij(l) achieves periodically, with period mij, all
values from the set Wij, i.e. fij(l)=fij(l+k∗mij) for k=0,1,2,... and l=0,1,2,...,mij-1. Therefore,
function fij(l) defines permutation of the set Wij.

By symmetry it is also possible to define local starting times tji(l) ∈[0,cj) as times of
resource requests xi(l) of process Pi in relation to the nearest resource allocation times aj(k) ≤
xi(l) of process Pj. The corresponding formula is given according to (4) by exchanging the
indexes i, j.

 tji(l) = ai(l) mod cj = fji(l)Dji + yji(l) & l=0,1,2,... (5)

It is possible to show [10] that the following reverse transformations hold:

fij(l)=[mij – fij(l) – (Dij – yij(l)) div Dij] mod mji & yji(l)=[Dij – yij(l)] mod Dij (6)

The presented formulas can be used to define conditions, which fulfilled, guarantee
waiting-free execution of the processes.

5. DESIGN OF CONSTRAINTS

Dynamics of the n-process system depends on dynamics of its 2-process subsystems (Pi,
Pj), where i≠j & i,j∈{1,2,...,n}. It was shown [10, 11] that behaviour of each subsystem (Pi, Pj)
can be analysed taking into account the operation times and local starting times tij(l)∈[0,ci) (4)
of process Pj, calculated in relation to resource allocation times of Pi, or local starting times
tji(l)∈[0,cj) (5) of the process Pi, calculated in relation to resource allocation times of Pj. In
particular the following theorems define constraints for existence of waiting-free schedules of
the 2-process system (Pi, Pj).

 207

Theorem 1. A waiting-free schedule exists for the 2-process system (Pi, Pj) if and only if exists
starting time tij(0)∈[0,ci), where tij(0)= fij(0)Dij + yij(0) (4), such that

 ri ≤ yij(0) ≤ Dij – rj (7)

When the condition (7) holds then the 2-process system’s cycle time is equal to Tij =

l.c.m.(ci,cj) = (ci∗cj)/Dij, where l.c.m.(ci,cj) denotes the least common multiple.
If the Theorem 1 holds, then also theorem taking into account tji(0) (5) holds. This is

because from (6) yji(l)=[Dij – yij(l)] mod Dij and for l=0 from (7) yij(0)≤Dij–rj<Dij there is
yji(0)=Dij – yij(0) (2). Hence, from (7) ri ≤ Dij – yji(0) ≤ Dij – rj. Since, Dij=Dji there is

 rj ≤ yji(0) ≤ Dji – ri (8)

Theorem 2. The conditions (7) and (8) are equivalent, i.e. ri ≤ yij(0) ≤ Dij – rj if and only if rj ≤
yji(0) ≤ Dji – ri.

The n-process system consists of n(n-1)/2 different 2-process subsystems (Pi, Pj) defined by
i<j & i,j∈{1,2,...,n}. If for each (Pi, Pj) constraint (7) holds, then the processes will never wait
for access to the resources. This configuration is stable since processes do not disturb each
other and therefore positions of any two processes will be not changed. Taking into account
Theorem 2 the necessary and sufficient condition for existence of waiting-free schedule for the
n-process system is given by the following theorem [11].

Theorem 3. A waiting-free schedule exists for the n-process system if and only if for each
subsystem (Pi, Pj), where i<j & i,j∈{1,2,...,n}, exists a local starting time tij(0)∈[0,ci), where
tij(0)= fij(0)Dij + yij(0) (4), or a local time tji(0)∈[0,cj), where tji(0)= fji(0)Dji + yji(0) (5), such
that

 (ri ≤ yij(0) ≤ Dij – rj) ∨ (rj ≤ yji(0) ≤ Dji – ri) (9)

When the condition (9) holds for each i<j & i,j∈{1,2,...,n} then a cycle time of the waiting-
free n-process system is equal to T = l.c.m.(c1,...,ci,...cj,...,cn).

Since the n-process waiting-free system has a cyclic steady-state with a period T it is
enough to consider starting resource allocation times ai(0), i=1,2,...,n, such that

0 ≤ ai(0) < T (10)

According to Theorem 3 in order to find all starting positions ai(0) (4) of the processes, for
which waiting-free schedules exists, a constraint based finite domain combinatorial problem
defined by a set of constraints (4), (5), (9) and (10) over finite sets of nonnegative integers has
to be solved.

 208

6. SEARCHING STARTING TIMES USING CP METHOD

Solution to the constraint satisfaction problem of finding starting times (10) of the
processes for which waiting-free steady-state schedules exist will be given using constraint
logic programming (CLP) method [4, 7, 16, 17]. The solution will be implemented using
a constraint programming (CP) language Oz, which is a tool of the Mozart CLP system [4].
A declarative character of the Oz language and its high efficiency in solving combinatorial
problems creates an attractive alternative for the currently available, based on conventional
operation research techniques, software tools of computer-integrated management [12, 13, 15].

Usually a CSP problem is defined by a set of variables X ={x1, x2, ... ,xn}, their domains
E = {Ei | Ei = [ei1, ei2 ,..., eij ,..., eim], i = 1,…,n}, and a set of constraints C = {Ci | i = 1,...,L}.
A solution of the problem is such an assignment of the variables that all the constraints are
satisfied [13, 14, 15].

The following CSP notation can be applied: CSP = ((X,E), C), where c∈C is a constraint
specified by a predicate P[xk, xl, ..., xh] defined on a subset of the set X. The CSP problem
formulated can be solved using constraint programming. Searching for solutions is based on
techniques allowing decomposition of the CSP problem into a set of subproblems [13, 15].

Two basic techniques of constraint programming are constraint propagation and constraint
distribution.

Constraint propagation is an efficient inference mechanism designed to narrow the variable
domains. It is based on a logical analysis of the constraints to derive the new constraints, which
define a smaller space of the admissible solutions. For instance, in case of the following
domain constraints x1<x2 & x1∈[5, 14] & x2∈[1, 10] (i.e. c1=P1[x1,x2], E1=[5, 14], E2=[1, 10])
constraint propagation can narrow the domains of x1 and x2 to x1∈[5, 9] and x2∈[6, 10]. It is
possible to analyse a domain of a chosen decision variable, e.g. x1, starting from the lower-
bound value (strategy value:min; e.g. x1=5) or from the upper-bound value (strategy value:max;
e.g. x1=14). The constraint propagation reduces a size of a solution search space.

Constraint distribution splits a problem into complementary cases once constraint
propagation cannot advance further. Usually, a distribution strategy is defined on a sequence of
variables x1, x2, ...,xk used in a model of a problem. When a distribution step is necessary, the
strategy selects (according to the standard strategy or user defined heuristics) a not yet
determined variable in the sequence and substitutes a value onto this variable. For instance, the
search space can be distributed into disjoint spaces by substitutions x1=u and x1≠u, where an
integer u is consistent with the set of constraints, e.g. u can be an upper-bound value of the
variable domain. In particular, if x1=9, then the unique solution is x1=9 & x2=10, and the space
defined by x1≠9 yet has to be analysed. By iterating propagation and distribution, propagation
will eventually determine the solutions of a problem.

To develop the Oz language script solving a given problem a model and a distribution
strategy have to be designed. A model of a problem is a representation of the problem as
a finite domain one. A model specifies the variables, the constraints representing the problem,
as well variants of searching strategy. These elements are subject to the principles of the CSP
decomposition that minimizes the number of potential backtrackings. The art of constraint
programming consists in finding for a problem a model and a distribution strategy that yield
the smallest and computationally feasible search tree [4, 7, 16, 17].

 209

6.1. CSP problem formulation

Given is a system of n cyclic processes sharing single resource. Each process Pi, where
i=1,...,n, executes periodically a sequence of two operations such that the first one is using
a shared and the second one a non-shared resource. The operation times of the processes
correspond to the time-restricted resource availability. Assume that the operation time of using
the shared resource is given by variable xri∈ERi and using non-shared resource by variable
xoi∈EOi, where ERi, EOi are domains of the variables. Suppose a certain allocation of values to
the variables, e.g. xri=ri, xoi=oi, ri∈ERi & oi∈EOi. A cycle time of the process Pi is equal to ci =
ri + oi. For the given processes parameters ri, oi, ci the problem considered consists in finding
(if exist) all starting resource allocation times ai(0)∈[0,T) (10) of the processes, where
T=l.c.m.(c1,...,cn) and i=1,...,n, for which a waiting-free steady-state schedules exist for a given
n-process system.

Behaviour of the n-process system can be analysed in any time interval Bk=[ak(0), ak(0)+c)
such that 0 ≤ ak(0) < ak(0)+c < T, k∈{1,2,...,n} & c∈N. It can be noticed that for c=cmax=
max(c1,...,cn), i.e. cmax is a cycle time of the slowest process, the interval Bk is the smallest one
for which each process Pi receives access to the shared resource at least once. Therefore it is
enough to consider starting resource allocation times ai(0)∈[ak(0), ak(0)+cmax). In particular, it
is possible to choose ak(0) equal to a starting time of the slowest process Pk and to assume that
the observation zone starts at ak(0)=0. Hence, for cmax=ck, domains of variables ai(0) are
defined by the following constraints:

ak(0)=0 & 0 ≤ ai(0) < ck & ck=max(c1,...,cn) (11)

In order to solve the problem considered all values of ai(0) (11) for which local starting
times tij(0)∈[0,ci) (4) and tji(0)∈[0,cj) (5) fulfilling constraints (9) exist, have to be found,
where i<j & i,j∈{1,2,...,n}. By introducing variables

sij=aj(0)–ai(0) & aj(0)≥ai(0) (12)

sji=ai(0)–aj(0) & ai(0)≥aj(0), (13)

which denote a distance between any starting resource allocation times of the processes, it is
possible to derive new constraints integrating constraints given by (9) and (11). From (11)
ai(0),aj(0)∈[0,ck), hence also sij,sji∈[0,ck), where ck=max(c1,...,cn) & i<j & i,j∈{1,2,...,n}/{k}.
According to (12) skj=aj(0)–ak(0)=aj(0) and from (13) ski=ai(0)–ak(0)=ai(0). Hence, taking into
account (11) ski,skj∈[0,ck).The following conditions hold:

sij=aj(0)–ai(0)=[aj(0)–ak(0)] – [ai(0)–ak(0)] = skj – ski & skj ≥ ski (14)

 sji=ai(0)–aj(0)=[ai(0)–ak(0)] – [aj(0)–ak(0)] = ski – skj & ski ≥ skj (15)

sij, sji, ski, skj∈[0,ck) & ck=max(c1,...,cn) (16)

 210

The local starting times tij(0)∈[0,ci) (4) and tji(0)∈[0,cj) (5) can be derived using the
following formulas:

tij(0) = sij mod ci & tji(0) = sji mod cj (17)

Let uij=(sij div ci), where uij∈N∪{0}. From (1) sij=(sij div ci)ci + (sij mod ci) = (uij)ci + tij(0).
Hence, using (4) sij=(uij)Dijmij + fij(0)Dij + yij(0) = [uijmij + fij(0)]Dij + yij(0) = vijDij + yij(0),
where vij = [uijmij + fij(0)]. Finally, taking into account constraint for uij and mij, fij(0) (4) there is
sij = vijDij + yij(0) and vij∈N∪{0}. A domain of variable vij can be reduced. For sij∈[0,ck) (16)
there is 0≤vijDij+yij(0)<ck & yij(0)∈[0,Dij) (4). Hence, 0≤vij<ck/Dij & vij,yij∈N∪{0}. Assuming
condition (9) and denoting yij=yij(0) the following formulas, defining a distance between
starting resource allocation time of Pj and starting resource allocation time of Pi, hold:

sij = vijDij + yij & vij∈[0, ck/Dij) & yij∈[ri, Dij – rj] & vij, yij∈N∪{0} (18)

Corresponding formulas defining distance sji∈[0,ck) (16) are given below:

sji = vjiDji + yji & vji∈[0, ck/Dji) & yji∈[rj, Dji – ri] & vji, yji∈N∪{0} (19)

Using condition (18) and (19) it is possible to transform the problem considered to the
following constraint satisfaction problem.

Given is the n-process system with the operation times of the processes specified by
ZTi=(ri,oi), where ri∈ERi & oi∈EOi are defined in the uniform time units, i=1,...,n. A cycle
time of a process Pi is defined as ci = ri + oi. Let a starting time of the slowest process Pk, where
ck=max(c1,...,cn) & k∈{1,...,n}, is such that ak(0)=0. Starting times ai(0)∈[0,ck) of the
processes, where i∈{1,...,n}/{k}, are defined in relation to the time ak(0)=0. Let a time shift
ski=ai(0)–ak(0)=ai(0), where ski∈[0,ck), and a time shift for any two Pi, Pj, where i<j &
i,j∈{1,2,...,n}/{k}, is defined according to (14) as sij = skj – ski, for skj ≥ ski, or is defined
according to (15) as sji = ski – skj, for ski ≥ skj. The problem is to find, if exist, all ski∈[0,ck)
where i∈{1,2,...,n}/{k}, and all sij, sji∈[0,ck) where i<j & i,j∈{1,2,...,n}/{k}, such that
constraints (18) and (19) hold.

The constraint satisfaction problem defined by a given model of the n-process system will
be solved using CLP language Oz and a programming system Mozart [4, 7].

6.2. Computational experiment

A solution of a problem of finding starting times of the processes for which waiting-free
steady-state schedules exist will be illustrated on the example of the system shown in Fig. 1.
First the system S1 with four cyclic processes sharing single resource will be considered.
A standard first fail (ff) distribution strategy available in the Oz language is selected to
distribute the constraints on the variables. According to this strategy variables are analysed
starting from the undetermined variable for which the number of different possible values is
minimal. The intervals defining constraints for the variables are searched using a strategy
value:min.

Let us consider the 4-process system S1=(P1, P2, P3, P4); see Fig. 1. The operation times of
the processes belong to the following domains: xr1∈[1,5], xo1∈[16,20]; xr2∈[2,6], xo2∈[10,14];
xr3∈[1,5], xo3∈[5,9]; xr4∈[1,5], xo4∈[3,7].

 211

CASE 1. Assume that the variables have been allocated to the lower-bound values of their
domains, i.e. ZT1=(r1,o1) & xr1=r1=1 & xo1=o1=16 & c1=17. Similarly, ZT2=(r2,o2) & r2=2 &
o2=10 & c2=12; ZT3=(r3,o3) & r3=1 & o3=5 & c3=6; ZT4=(r4,o4) & r4=1 & o4=3 & c4=4. There
is: D12=D21= g.c.d.(c1,c2)=1, D13=D31=g.c.d.(c1,c3)=1, D14=D41=g.c.d.(c1,c4)=1, D23=D32=
g.c.d.(c2,c3)=6, D24=D42=g.c.d.(c2,c4)=4, D34=D43=g.c.d.(c3,c4)=2. Since, c1 = max(c1,c2,c3,c4) =
17, hence process Pk, where k=1, is the slowest one. Starting times of the processes P2, P3, P4
in relation to process P1 are defined by variables s12, s13, s14∈[0,c1). Starting times sij, sji∈[0,c1),
where i<j & i,j∈{1,2,3,4}/{1}, can be calculated using s12, s13, s14 according to relations (14)
and (15). Taking into account (18) and (19) domains of the variables s12, s13, s14∈[0,c1) and sij,
sji∈[0,c1) where i<j & i,j∈{2,3,4}, are defined by the following constraints:
• s12 = v12D12 + y12 & v12∈[0, c1/D12) & y12∈[r1, D12 – r2];
• s13 = v13D13 + y13 & v13∈[0, c1/D13) & y13∈[r1, D13 – r3];
• s14 = v14D14 + y14 & v14∈[0, c1/D14) & y14∈[r1, D14 – r4];
• s23 = s13 – s12 & s13 ≥ s12 & s23 = v23D23 + y23 & v23∈[0, c1/D23) & y23∈[r2, D23 – r3];
• s32 = s12 – s13 & s12 ≥ s13 & s32 = v32D32 + y32 & v32∈[0, c1/D32) & y32∈[r3, D32 – r2];
• s24 = s14 – s12 & s14 ≥ s12 & s24 = v24D24 + y24 & v24∈[0, c1/D24) & y24∈[r2, D24 – r4];
• s42 = s12 – s14 & s12 ≥ s14 & s42 = v42D42 + y42 & v42∈[0, c1/D42) & y42∈[r4, D42 – r2];
• s34 = s14 – s13 & s14 ≥ s13 & s34 = v34D34 + y34 & v34∈[0, c1/D34) & y34∈[r3, D34 – r4];
• s43 = s13 – s14 & s13 ≥ s14 & s43 = v43D43 + y43 & v43∈[0, c1/D43) & y43∈[r4, D43 – r3].

Taking into account the parameters of the 4-process system the following relations hold:
s12, s13, s14, s23, s24, s34, s32, s42, s43∈[0, 17);
v12∈[0, 17), y12∈[1, -1] (an empty set);
v13∈[0, 17), y13∈[1, 0] (an empty set);
v14∈[0, 17), y14∈[1, 0] (an empty set);
v23, v32∈[0, 2.83) & v23, v32∈N∪{0}, y23∈[2, 5], y32∈[1, 4];
v24, v42∈[0, 4.25) & v24, v42∈N∪{0}, y24∈[2, 3], y42∈[1, 2];
v34, v43∈[0, 8.5) & v34, v43∈N∪{0}, y34∈[1, 1], y43∈[1, 1].

It can be noticed that the domains of the variables y12, y13, y14 are empty sets. Hence, in the case
considered there is no solution to the given CSP. This means that the waiting-free steady-state
schedules do not exist for the chosen allocation of values to the variables.

CASE 2. Let us allocate to the variable xo1∈[16,20] the next one value starting from the

lower-bound value of its domain, i.e. xo1=o1=17. Assuming that the values of the other
variables are the same as in the Case 1 the following relations hold: ZT1=(r1,o1) & r1=1 &
o1=17 & c1=18; ZT2=(r2,o2) & r2=2 & o2=10 & c2=12; ZT3=(r3,o3) & r3=1 & o3=5 & c3=6;
ZT4=(r4,o4) & r4=1 & o4=3 & c4=4. There is: D12=D21=g.c.d.(c1,c2)=6, D13=D31=g.c.d.(c1,c3)=6,
D14=D41=g.c.d.(c1,c4)=2, D23=D32=g.c.d.(c2,c3)=6, D24=D42=g.c.d.(c2,c4)=4, D34=D43=g.c.d.(c3,
c4)=2. Since, c1 = max(c1,c2,c3,c4) = 18, hence process Pk, where k=1, is the slowest one.

Starting times of the processes P2, P3, P4 in relation to starting time of process P1 are
defined by variables s12, s13, s14∈[0,c1). Starting times sij, sji∈[0,c1), where i<j &
i,j∈{1,2,3,4}/{1}, can be calculated using s12, s13, s14 according to relations (14) and (15).
Taking into account the parameters of the 4-process system and relations (14), (15) and (18),

 212

(19) domains of the variables s12, s13, s14∈[0,c1) and sij, sji∈[0,c1) where i<j & i,j∈{2,3,4}, are
defined by the following constraints:
s12, s13, s14, s23, s24, s34, s32, s42, s43∈[0, 18);
v12∈[0, 3), y12∈[1, 4]; v13∈[0, 3), y13∈[1, 5]; v14∈[0, 9), y14∈[1, 1];
v23, v32∈[0, 3), y23∈[2, 5], y32∈[1, 4];
v24, v42∈[0, 4.5), y24∈[2, 3], y42∈[1, 2]; since v24, v42∈N∪{0}, therefore v24, v42∈[0, 4];
v34, v43∈[0, 9), y34∈[1, 1], y43∈[1, 1].

A model presented can be implemented using predefined abstractions available in the Oz

language. The executable script given below can find solution vectors defined by (s12, s13, s14,
sij, smn, spq, y12, y13, y14, yij, ymn, ypq), where i≠j & i,j∈{2,3}, m≠n & m,n∈{2,4}, p≠q &
p,q∈{3,4}. In particular, the program generates solution vectors in case of (s12, s13, s14, s23, s24,
s34, y12, y13, y14, y23, y24, y34).

local Find in
 proc {Find Root}
 S12 S13 S14 S23 S24 S34 Y12 Y13 Y14 Y23 Y24 Y34 V12 V13 V14
 V23 V24 V34 D12 D13 D14 D23 D24 D34
 in
 Root=sol(s12:S12 s13:S13 s14:S14 s23:S23 s24:S24 s34:S34
 y12:Y12 y13:Y13 y14:Y14 y23:Y23 y24:Y24 y34:Y34)
%domains of the variables
S12::0#17 S13::0#17 S14::0#17 S23::0#17 S24::0#17 S34::0#17
D12::6#6 D13::6#6 D14::2#2 D23::6#6 D24::4#4 D34::2#2
V12::0#2 V13::0#2 V14::0#8 V23::0#2 V24::0#4 V34::0#8
Y12::1#4 Y13::1#5 Y14::1#1
Y23::2#5 %for Y32 change into 1#4
Y24::2#3 %for Y42 change into 1#2
Y34::1#1 %for Y43 the same relation holds 1#1
%constraints for variables S23, S24, S34
S23=:S13-S12 S13>=:S12 S24=:S14-S12
S14>=:S12 S34=:S14-S13 S14>=:S13
S12=:V12*D12+Y12 S13=:V13*D13+Y13 S14=:V14*D14+Y14
S23=:V23*D23+Y23 S24=:V24*D24+Y24 S34=:V34*D34+Y34
%start propagation and distribution
{FD.distribute ff Root}
 end
 {Browse {SearchAll Find}} %find all solutions
end

In the case considered a total number of 27 solutions have been generated (Fig. 3).
Solutions with the same values of (y12, y13, y14, y23, y24, y34) define four subsets of starting
times, which belong to the same waiting-free steady-state schedules. These will be denoted as
schedules of type 1, type 2, type 3 and type 4.

 213

Fig.3. Solution vectors of the CSP defined in the Case 2

The set of solution vectors defining starting times of the processes for the waiting-free
schedule of type 1 (Fig. 4) contains the following elements:
• sol(s12:1, s13:4, s14:7, s23:3, s24:6, s34:3, y12:1, y13:4, y14:1, y23:3, y24:2, y34:1);
• sol(s12:1, s13:4, s14:11, s23:3, s24:10, s34:7, y12:1, y13:4, y14:1, y23:3, y24:2, y34:1);
• sol(s12:1, s13:4, s14:15, s23:3, s24:14, s34:11, y12:1, y13:4, y14:1, y23:3, y24:2, y34:1);
• sol(s12:1, s13:10, s14:11, s23:9, s24:10, s34:1, y12:1, y13:4, y14:1, y23:3, y24:2, y34:1);
• sol(s12:1, s13:10, s14:15, s23:9, s24:14, s34:5, y12:1, y13:4, y14:1, y23:3, y24:2, y34:1);
• sol(s12:7, s13:10, s14:13, s23:3, s24:6, s34:3, y12:1, y13:4, y14:1, y23:3, y24:2, y34:1);
• sol(s12:7, s13:10, s14:17, s23:3, s24:10, s34:7, y12:1, y13:4, y14:1, y23:3, y24:2, y34:1);
• sol(s12:7, s13:16, s14:17, s23:9, s24:10, s34:1, y12:1, y13:4, y14:1, y23:3, y24:2, y34:1).

The examples of the solution vectors for the other subsets are given below:
• sol(s12:3, s13:8, s14:9, s23:5, s24:6, s34:1, y12:3, y13:2, y14:1, y23:5, y24:2, y34:1);

a starting time of a waiting-free schedule of type 2;
• sol(s12:2, s13:4, s14:5, s23:2, s24:3, s34:1, y12:2, y13:4, y14:1, y23:2, y24:3, y34:1);

a starting time of a waiting-free schedule of type 3;
• sol(s12:4, s13:8, s14:11, s23:4, s24:7, s34:3, y12:4, y13:2, y14:1, y23:4, y24:3, y34:1);

a starting time of a waiting-free schedule of type 4.

 214

Fig.4. The system S1: a waiting-free schedule of type 1. A letter A denotes a time unit of using
the shared resource R1 and a letter O – a time unit of using non-shared resource. The starting

times corresponding to the first solution vector are denoted in bold

Solution of the problem for the cases defined by vectors: (s23, s24, s43), (s23, s42, s34), (s23, s42,
s43), (s32, s24, s34), (s32, s24, s43), (s32, s42, s34), (s32, s42, s43) can be found by symmetry in the same
way as for the case (s23, s24, s34). A number of solution vectors for each case equals to 27. All
derived starting times belong to the four different waiting-free schedules the same as
previously defined type1, type 2, type 3 and type 4. A cycle time of the schedules is equal to
T=l.c.m.(c1,c2,c3,c4)=36.

CASE 3. Now, let us consider the system shown in Fig. 1, which is composed of four

subsystems: S1 = (P1, P2, P3, P4) – the processes in this 4-process are sharing resource R1; S2 =
(P4, P5) – the processes in this 2-process are sharing resource R2; S3 = (P4, P6) – the processes
in this 2-process are sharing resource R3; S4 = (P4, P7) - the processes in this 2-process are
sharing resource R4. Assume that the operation times for the subsystem S1 are the same as in
the Case 2 (Fig. 4).

For the system S2 = (P4, P5) it is assumed that the following relations hold: ZT4=(r4,o4) &
r4=1 & o4=3 & c4=4; ZT5=(r5,o5) & r5=1 & o5=1 & c5=2. There is: D45=D54=g.c.d.(c4,c5)=2.
Since, c4 = max(c4,c5) = 4, hence process Pk, where k=4, is the slowest one. Starting time of
processes P5 in relation to starting time of process P4 is defined by variable s45∈[0,c4). Taking
into account the parameters of system S2 and relations (18), (19) domain of the variable
s45∈[0,c4) is defined by the following constraints:
s45 = v45D45 + y45 & v45∈[0, c4/D45) & y45∈[r4, D45 – r5];
s45∈[0, 4); v45∈[0, 2), y45∈[1, 1].

The solution vector is defined by (s45, y45). Using the program presented in the Case 2 it is

possible to find all solutions. The set of solution vectors defining starting times of the process
P5 in relation to starting time of process P4 contains the following elements: sol(s45:1, y45:1);
sol(s45:3, y45:1). All derived starting times belong to the same waiting-free schedule (see
Fig. 5). A cycle time of the schedule is equal to T=l.c.m.(c4,c5)=4.

 0 36
 | |
 P1 |AOOOOOOOOOOOOOOOOOAOOOOOOOOOOOOOOOOO|AOOOOOOO...
 | |
 P2 |OAAOOOOOOOOOOAAOOOOOOOOOOAAOOOOOOOOO|OAAOOOOO...
 | |

 P3 |OOOOAOOOOOAOOOOOAOOOOOAOOOOOAOOOOOAO|OOOOAOOO...
 | |
 P4 |OOOAOOOAOOOAOOOAOOOAOOOAOOOAOOOAOOOA|OOOAOOOA...
 | T = 36 |

 215

Fig.5. The system S2 and its the only waiting-free schedule. A letter B denotes a time unit of
using the shared resource R2 and a letter O – a time unit of using non-shared resource. The

starting times corresponding to the first solution vector are denoted in bold

For the system S3 = (P4, P6) it is assumed that the following relations hold: ZT4=(r4,o4) &
r4=1 & o4=3 & c4=4; ZT6=(r6,o6) & r6=1 & o6=7 & c6=8. There is: D46=D64=g.c.d.(c4,c6)=4.
Since, c6 = max(c4,c6) = 8, hence process Pk, where k=6, is the slowest one. Starting time of
processes P4 in relation to starting time of process P6 is defined by variable s64∈[0,c6). Taking
into account the parameters of system S3 and relations (18), (19) domain of the variable
s64∈[0,c6) is defined by the following constraints:
s64 = v64D64 + y64 & v64∈[0, c6/D64) & y64∈[r6, D64 – r4];
s64∈[0, 8); v64∈[0, 2), y64∈[1, 3].

The solution vector is defined by (s64, y64). Using the program presented in the Case 2 it is

possible to find all solutions. The set of solution vectors defining starting times of the process
P4 in relation to starting time of process P6 contains six elements. Vectors with the same value
of y64 define three subsets of starting times, which belong to the same waiting-free steady-state
schedules. These will be denoted as schedules of type 1, type 2 and type 3.

Fig.6. The system S3: a waiting-free schedule of type 1. A letter C denotes a time unit of using
the shared resource R3 and a letter O – a time unit of using non-shared resource. The starting

times corresponding to the first solution vector are denoted in bold

The set of solution vectors defining starting times of the processes for the waiting-free

schedule of type 1 (Fig. 6) contains the following elements: sol(s64:1, y64:1); sol(s64:5, y64:1).
The set of solution vectors defining the waiting-free schedule of type 2 contains: sol(s64:2,
y64:2); sol(s64:6, y64:2) and the set of vectors defining the schedule of type 3 contains: sol(s64:3,
y64:3); sol(s64:7, y64:3). A cycle time of the schedule is equal to T=l.c.m.(c4,c6)=8.

For the system S4 = (P4, P7) it is assumed that the following relations hold: ZT4=(r4,o4) &
r4=1 & o4=3 & c4=4; ZT7=(r7,o7) & r7=1 & o7=5 & c7=6. There is: D47=D74=g.c.d.(c4,c7)=2.
Since, c7 = max(c4,c7) = 6, hence process Pk, where k=7, is the slowest one. Starting time of
processes P4 in relation to starting time of process P7 is defined by variable s74∈[0,c7). Taking

 0 4
 | |
 P4 |BOOO|BOOOBOOOBOOOBO...
 | |
 P5 |OBOB|OBOBOBOBOBOBOB...
 |T=4 |

 0 8
 | |
 P4 |OCOOOCOO|OCOOOCOOOCOOOCOOO...
 | |
 P6 |COOOOOOO|COOOOOOOCOOOOOOOC...
 | T=8 |

 216

into account the parameters of system S4 and relations (18), (19) domain of the variable
s74∈[0,c7) is defined by the following constraints:
s74 = v74D74 + y74 & v74∈[0, c7/D74) & y74∈[r7, D74 – r4];
s74∈[0, 6); v74∈[0, 3), y74∈[1, 1].

The solution vector is defined by (s74, y74). Using the program presented in the Case 2 it is
possible to find all solutions. The set of solution vectors defining starting times of the process
P4 in relation to starting time of process P7 contains the following elements: sol(s74:1, y74:1);
sol(s74:3, y74:1); sol(s74:5, y74:1). All derived starting times belong to the same waiting-free
schedule (see Fig. 7). A cycle time of the schedule is equal to T=l.c.m.(c4,c7)=12.

Fig.7. The system S4 and its the only waiting-free schedule. A letter D denotes a time unit of
using the shared resource R4 and a letter O – a time unit of using non-shared resource. The

starting times corresponding to the first solution vector are denoted in bold

Fig.8. The final waiting-free schedule for the system of processes shown in Fig. 1. The letters
A, B, C, D denote time units of using the shared resources R1, R2, R3, R4 and a letter O –

a time unit of using non-shared resource

Joining together the type 1 schedules for the subsystems S1, S2, S3, S4 (see Fig. 4, Fig. 5,

Fig. 6, Fig. 7) it is possible to design a waiting-free steady-state schedule for the system shown
in Fig. 1. The example of the final schedule is shown in Fig. 8. A cycle time of the schedule is
equal to T=l.c.m.(c1,c2,c3,c4,c5,c6,c7) =72.

 0 12
 | |
 P4 |ODOOODOOODOO|ODOOODOOODOOO...
 | |
 P7 |DOOOOODOOOOO|DOOOOODOOOOOD...
 | T=12 |

 0 72
 | | |
 P1 |AOOOOOOOOOOOOOOOOOAOOOOOOOOOOOOOOOOO|AOOOOOOOOOOOOOOOOOAOOOOOOOOOOOOOOOOO|AOOOOOOO...
 | | |
 P2 |OAAOOOOOOOOOOAAOOOOOOOOOOAAOOOOOOOOO|OAAOOOOOOOOOOAAOOOOOOOOOOAAOOOOOOOOO|OAAOOOOO...
 | | |
 P3 |OOOOAOOOOOAOOOOOAOOOOOAOOOOOAOOOOOAO|OOOOAOOOOOAOOOOOAOOOOOAOOOOOAOOOOOAO|OOOOAOOO...
 | | |
 P4 |BCDABCDABCDABCDABCDABCDABCDABCDABCDA|BCDABCDABCDABCDABCDABCDABCDABCDABCDA|BCDABCDA...
 | | |
 P5 |OBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOB|OBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOBOB|OBOBOBOB...
 | | |
 P6 |COOOOOOOCOOOOOOOCOOOOOOOCOOOOOOOCOOO|OOOOCOOOOOOOCOOOOOOOCOOOOOOOCOOOOOOO|COOOOOOOC...
 | | |
 P7 |ODOOOOODOOOOODOOOOODOOOOODOOOOODOOOO|ODOOOOODOOOOODOOOOODOOOOODOOOOODOOOO|ODOOOOODO...
 | T = 72 |

 217

7. CONCLUSIONS

A problem of finding waiting-free schedules for repetitive manufacturing processes using

common resources in mutual exclusion has been considered. In many cases systems of
processes can be seen as composed of subsystems with n processes sharing single resource.
Using necessary and sufficient conditions for waiting-free steady-state execution of the
n-process system and modulus arithmetic properties a CP-based method for finding operation
times and starting times of the processes for which waiting-free schedules exist has been
presented. For a given operation times of the processes, chosen from a certain domains, the
method allows derive, if exist, all possible initial resource allocation times for which a waiting-
free steady-state execution is possible. The method has been implemented using constraint
logic programming language Oz. The illustrative example of its application to steady-state flow
planning of cyclic processes has been given. An analysis of solution vectors allows answer to
a question what is a number of different waiting-free schedules for a given n-process system.
The CP-method designed can also be used to automate searching of the operations times for
which exist starting times of the processes belonging to a waiting-free steady-state schedule.
The extension of the method requires a procedure for calculating the greatest common divisor
of two integers representing cycle times of any two processes. In the example presented the Oz
script designed uses the greatest common divisors as a given data.

Systems of processes considered in this paper, in particular the n-process subsystems, are
deadlock-free. Further research can be focused on a problem of finding waiting-free schedules
for systems of cyclic processes with deadlock possibility.

Using the CP-based method presented it is possible to build simple task oriented decision
support software tools, which allow to solve many production planning problems concerning
the needs of the small and medium size enterprises (SMEs).

References

[1] ALPAN G., JAFARI M. A.: Dynamic Analysis of Timed Petri Nets: a Case of Two

Processes and a Shared Resource. IEEE Trans. on Robotics and Automation, Vol.13, No.
3, 1997, pp. 338-346.

[2] ALPAN G., JAFARI M. A.: Synthesis of Sequential Controller in the Presence of
Conflicts and Free Choices. IEEE Trans. on Robotics and Automation, Vol.14, No. 3,
1998, pp. 488-492.

[3] BANASZAK Z., KROGH B.: Deadlock Avoidance in Flexible Manufacturing Systems
with Concurrently Competing Process Flows. IEEE Trans. on Robotics and Automation,
Vol. 6, No. 6, 1990, pp. 724-734.

[4] BENHAMOU F.: Interval constraint logic programming. Ed. Podelski A., Constraints:
Basics and Trends, Lecture Notes in Computer Science, Vol. 910, Springer-Verlag,
Berlin, Heidelberg, 1995, pp. 1-21.

[5] COHEN H.: A Course in Computational Algebraic Number Theory. Springer-Verlag,
Berlin, Heidelberg, 1993.

[6] POLAK M., MAJDZIK P., BANASZAK Z., WÓJCIK R.: The Performance Evaluation
Tool for Automated Prototyping of Concurrent Cyclic Processes. Fundamenta
Informaticae, Vol. 60, No.1-4, April 2004, pp. 269-289.

[7] SARASWAT V.: Concurrent Constraint Programming. MIT Press, 1994.

 218

[8] SCHRODER M. R.: Number Theory in Science and Communications. 3rd edition,
Springer-Verlag, Berlin, Heidelberg, 1997.

[9] WÓJCIK R.: Metody dynamicznej alokacji zasobów w zadaniach sterowania ESP.
Zeszyty Naukowe Politechniki Śląskiej, seria Automatyka, z.109, Gliwice, 1992, pp.
321-332.

[10] WÓJCIK R.: Performance evaluation of repetitive manufacturing processes using state
vectors approach. Computer Integrated Manufacturing, Advanced Design and
Management, Eds. Skołud B., Krenczyk D., WNT, Warszawa, 2003, pp. 612-619.

[11] WÓJCIK R.: Towards Strong Stability of Concurrent Repetitive Processes Sharing
Resources. Systems Science, Vol. 27, No. 2, 2001, pp. 37-47.

[12] BANASZAK Z., JÓZEFOWSKA J. (red.): Project-driven manufacturing. WNT,
Warszawa, 2003.

[13] BANASZAK Z., TOMCZUK I.: Harmonogramowanie przedsięwzięć z wykorzystaniem
technik programowania z ograniczeniami. Red. Knosala R., Komputerowo Zintegrowane
Zarządzanie, WNT, Warszawa, 2004, pp. 38-47.

[14] ROSSI F.: Constraint (Logic) programming: A Survey on Research and Applications.
K.R. Apt et al. (Eds.), New Trends in Constraints, LNAI 1865, Springer-Verlag, Berlin,
2000, pp. 40-74.

[15] TOMCZUK I., BANASZAK Z.: Production flow planning based on CLP approach. ed.
Knosala R., Computer Integrated Management, WNT, Warszawa, 2005, pp. 589-600.

[16] VAN HENTENRYCK, P.: Constraint Logic Programming. Knowledge Engineering
Review, Vol. 6, 1991, pp. 151–194.

[17] WALLACE M.: Constraint Logic Programming. Ed. Kakas A.C., Sadri F., Computat.
Logic, LNAI 2407, Springer-Verlag, Berlin, Heidelberg, 2000, pp. 512-532.

