Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Algebra with noncommutativity of coordinates and noncommutativity of momenta which is rotationally-invariant and equivalent to noncommutative algebra of the canonical type is considered. In the framework of algebra, the effect of space quantization on the spectrum of systems of harmonic oscillators is studied. Among them, two interacting oscillators, a system of three interacting oscillators, and a harmonic oscillator chain are examined. The energy levels of the systems are found up to the second orders in the parameters of noncommutativity. We conclude that space quantization has an effect on the frequencies of the harmonic oscillators.
Wydawca
Rocznik
Tom
Strony
1--8
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
- Professor Ivan Vakarchuk Department for Theoretical Physics, Ivan Franko National University of Lviv,12 Drahomanov St., Lviv, 79005, Ukraine
autor
- Professor Ivan Vakarchuk Department for Theoretical Physics, Ivan Franko National University of Lviv,12 Drahomanov St., Lviv, 79005, Ukraine
Bibliografia
- [1] A. Hatzinikitas and I. Smyrnakis, “The noncommutative harmonic oscillator in more than one dimension,” J. Math. Phys.,vol. 43, no. 1, pp. 113–125, 2002.
- [2] A. Kijanka and P. Kosiński, “Noncommutative isotropic harmonic oscillator,”Phys. Rev. D, vol. 70, no. 12, p. 127702, 2004.
- [3] J. Jing and J.-F. Chen, “Noncommutative harmonic oscillator inmagnetic field and continuous limit,” Eur. Phys. J. C., vol. 60, no. 4,pp. 669–674, 2009.
- [4] A. Smailagic and E. Spallucci, “Feynman path integral on the non-commutative plane,” J. Phys. A: Math. Gen., vol. 36, no. 33,pp. L467–L471, 2003.
- [5] A. Smailagic and E. Spallucci, “Noncommutative 3D harmonic oscillator,” J. Phys. A: Math. Gen., vol. 35, pp. L363–L368, 2002.
- [6] B. Muthukumar and P. Mitra, “Noncommutative oscillators and the commutative limit,” Phys. Rev. D, vol. 66, no. 2, p. 027701, 2002.
- [7] P. D. Alvarez, J. Gomis, K. Kamimura, and M. S. Plyushchay, “Anisotropic harmonic oscillator, non-commutative landau problem and exotic newtonhooke symmetry,” Phys. Lett. B, vol. 659, no. 5, pp. 906 – 912, 2008.
- [8] A. E. F. Djemai and H. Smail, “On quantum mechanics on noncommutative quantum phase space,” Commun. Theor. Phys.,vol. 41, no. 6, pp. 837–844, 2004.
- [9] I. Dadic, L. Jonke, and S. Meljanac, “Harmonic oscillator on non-commutative spaces,” Acta Phys. Slov., vol. 55, pp. 149–164, 2005.
- [10] P. R. Giri and P. Roy, “The non-commutative oscillator, symmetry and the Landau problem,” Eur. Phys. J. C, vol. 57, no. 4, pp. 835–839, 2008.
- [11] J. B. Geloun, S. Gangopadhyay, and F. G. Scholtz, “Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space,”EPL (Europhysics Letters), vol. 86, no. 5,p. 51001, 2009.
- [12] E. M. C. Abreu, M. V. Marcial, A. C. R. Mendes, and W. Oliveira, “Harmonic oscillator on noncommutative spaces,”JHEP., vol. 2013:138, 2013.
- [13] A. Saha, S. Gangopadhyay, and S. Saha, “Noncommutative quantum mechanics of a harmonic oscillator under linearized gravitational waves,”Phys. Rev. D, vol. 83, no. 2, p. 025004, 2011.
- [14] D. Nath and P. Roy, “Noncommutative anisotropic oscillator in a homogeneous magnetic field,”Ann. Phys., vol. 377, pp. 115 – 124,2017.
- [15] Kh. P. Gnatenko and O. V. Shyiko, “Effect of noncommutativity on the spectrum of free particle and harmonic oscillator in rotationally invariant noncommutative phase space,” Mod. Phys. Lett. A, vol. 33, no. 16, p. 1850091, 2018.
- [16] A. Jellal, E. H. E. Kinani, and M. Schreiber, “Two coupled harmonic oscillators on noncommutative plane,” Int. J. Mod. Phys. A, vol. 20, no. 7, pp. 1515–1529, 2005.
- [17] I. Jabbari, A. Jahan, and Z. Riazi, “Partition function of the harmonic oscillator on a noncommutative plane,”Turk. J. Phys.,vol. 33, pp. 149–154, 2009.
- [18] B.-S. Lin, S.-C. Jing, and T.-H. Heng, “Deformation quantization for coupled harmonic oscillators on a general noncommutative space,” Mod. Phys. Lett. A, vol. 23, no. 06, pp. 445–456, 2008.
- [19] Kh. P. Gnatenko and V. M. Tkachuk, “Two-particle system with harmonic oscillator interaction in noncommutative phase space,” J. Phys. Stud., vol. 21, no. 3, p. 3001, 2017.
- [20] J. F. Santos, A. E. Bernardini, and C. Bastos, “Probing phase-space noncommutativity through quantum mechanics and thermodynamics of free particles and quantum rotors,” Physica A: Statistical Mechanics and its Applications, vol. 438, pp. 340 – 354, 2015.
- [21] Kh. P. Gnatenko, H. P. Laba, and V. M. Tkachuk, “Features offree particles system motion in noncommutative phase space and conservation of the total momentum,” Mod. Phys. Lett. A, vol. 33,no. 23, p. 1850131, 2018.
- [22] M. C. Daszkiewicz and J. Walczyk, “Classical mechanics of many particles defined on canonically deformed nonrelativistic spacetime,” Mod. Phys. Lett. A., vol. 26, no. 11, pp. 819–832, 2011.
- [23] N. Isgur and G. Karl, “p-wave baryons in the quark model,” Phys. Rev. D, vol. 18, no. 11, pp. 4187–4205.
- [24] L. Glozman and D. Riska, “The spectrum of the nucleons and the strange hyperons and chiral dynamics,” Phys. Rep., vol. 268, no. 4,pp. 263 – 303, 1996.
- [25] S. Capstick and W. Roberts, “Quark models of baryon masses and decays,” Prog. Part. Nucl. Phys., vol. 45, pp. S241 – S331, 2000.
- [26] S. Ikeda and F. Fillaux, “Incoherent elastic-neutron-scattering study of the vibrational dynamics and spin-related symmetry of protons in thekhco3 crystal,”Phys. Rev. B, vol. 59, no. 6, pp. 4134–4145, 1999.
- [27] F. Fillaux, “Quantum entanglement and nonlocal proton transfer dynamics in dimers of formic acid and analogues,” Chem. Phys. Lett., vol. 408, no. 4, pp. 302 – 306, 2005.
- [28] F. Hong-Yi, “Unitary transformation for four harmonically coupled identical oscillators,” Phys. Rev. A, vol. 42, no. 7, pp. 4377–4380, 1990.
- [29] F. Michelot, “Solution for an arbitrary number of coupled identical oscillators,” Phys. Rev. A, vol. 45, no. 7, pp. 4271–4276, 1992.
- [30] M. A. Ponte, M. C. Oliveira, and M. H. Y. Moussa, “Decoherence in a system of strongly coupled quantum oscillators. i. symmetric network,” Phys. Rev. A, vol. 70, no. 2. Art. 022324. 16 p., 2004.
- [31] M. A. Ponte, S. S. Mizrahi, and M. H. Y. Moussa, “Networks of dissipative quantum harmonic oscillators: A general treatment,” Phys. Rev. A, vol. 76, no. 3. Art. 032101. 10 p., 2007.
- [32] M. B. Plenio, J. Hartley, and J. Eisert, “Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom,”New Journal of Physics, vol. 6. Art. 36. 39 p., 2004.
- [33] Kh. P. Gnatenko and V. M. Tkachuk, “Noncommutative phase space with rotational symmetry and hydrogen atom,”Int. J. Mod. Phys. A., vol. 32, no. 26, p. 1750161, 2017.
- [34] Kh. P. Gnatenko and V. M. Tkachuk, “Composite system in rotationally invariant noncommutative phase space,” Int. J. Mod. Phys. A., vol. 33, no. 7, p. 1850037, 2018.
- [35] Kh. P. Gnatenko and V. M. Tkachuk, “Hydrogen atom in rotationally invariant noncommutative space,” Phys. Lett. A, vol. 378,no. 47, pp. 3509–3515, 2014.
- [36] Kh. P. Gnatenko, “System of interacting harmonic oscillators in rotationally invariant noncommutative phase space,” Phys. Lett. A, vol. 382, no. 46, pp. 3317 – 3324, 2018.
- [37] Kh. P. Gnatenko, “Harmonic oscillator chain in noncommutative phase space with rotational symmetry,” Ukr. J. Phys., vol. 64, no. 2,pp. 131–136, 2019.
- [38] C. M. Caves and B. L. Schumaker, “New formalism for two-photon quantum optics. I. Quadrature phases and squeezed states,” Phys. Rev. A, vol. 31, no. 5, pp. 3068–3092, 1985.
- [39] B. L. Schumaker and C. M. Caves, “New formalism for two-photon quantum optics. II. Mathematical foundation and compact notation,” Phys. Rev. A, vol. 31, no. 5, pp. 3093–3111, 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8b89035-ef70-4a35-9fb9-d3caa84d5d6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.