PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative assessment of environmental fow using hydrological methods of low fow indexes, Smakhtin, Tennant and fow duration curve

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are diferent methods in hydrological approach for estimating the environmental fow and a comparative assessment is necessary. The low fow indexes (7Q2 and 7Q10), Smakhtin, Tennent and fow duration curve were used to estimate the environmental fow of Zohreh River in the southwest of Iran. The Smakhtin, 7Q2, 7Q10 and Tennant methods resulted in the estimation of constant values of 27.2, 12.7, 5.9 and (8 and 24) cms, so that, on average 52.8, 26.9 and 12.3, 36.7 percent of the monthly fow is allocated to the environmental fow. The monthly environmental fow pattern for these methods does not ft well with the monthly fow pattern, and thus it can be concluded that the Smakhtin, 7Q2, 7Q10 and Tennant methods cannot be used in the initial form. The application of the fow duration curve leads to an environmental fow assessment in the range of 6.8–38 cms in diferent months, whose time pattern completely matched with the monthly fow pattern. In this method, on average, 30.8% (range 18–48%) of the monthly fow allocated to the environmental fow, which is reasonable and acceptable amounts. Investigating the results of this study shows that the time pattern of the results should be analyzed in comparison with the observational fow pattern to estimate the environmental fow with a hydrological approach. The results also suggest that the methods that provide a constant amount of environmental fow in diferent months of the year should be interpreted cautiously along with other methods.
Czasopismo
Rocznik
Strony
285--293
Opis fizyczny
Bibliogr. 44 poz.
Twórcy
autor
  • Water Resources Engineering, Lamei Gorgani Institute of Higher Education, Gorgan, Iran
  • Department of Water Engineering, Water and Soil Engineering Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
  • Department of Water Engineering, Water and Soil Engineering Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
  • Water Resources Engineering, Kuala Lumpur, Malaysia
Bibliografia
  • 1. Acreman M, Dunbar M, Hannaford J, Mountford O, Wood P, Holmes N, King J (2008) Developing environmental standards for abstractions from UK rivers to implement the EU Water Framework Directive/Développement de standards environnementaux sur les prélèvements d’eau en rivière au Royaume Uni pour la mise en œuvre de la directive cadre sur l’eau de l’Union Européenne. Hydrol Sci J 53(6):1105–1120
  • 2. Ansarifar MM, Salarijazi M, Ghorbani K, Kaboli AR (2019) Simulation of groundwater level in a coastal aquifer. Marine Georesource Geotechnol 38(3):257–265
  • 3. Ates H, Dogan S, Berktay A (2016) The effect of river type hydroelectric power plants on aquatic ecosystems: the case study of Göksu River-Eastern Mediterranean. Eur J Eng Nat Sci 1(1):39
  • 4. Bahrami E, Mohammadrezapour O, Salarijazi M, Jou PH (2019) Effect of base flow and rainfall excess separation on runoff hydrograph estimation using gamma model (case study: Jong catchment). KSCE J Civ Eng 23(3):1420–1426
  • 5. Balsane VK, Bansod RD (2016) Evaluation of hydrological criteria of environmental flow. Int J Trop Agric 34(6):1821–1827
  • 6. Bardina M, Honey-Rosés J, Munné A (2016) Implementation strategies and a cost/benefit comparison for compliance with an environmental flow regime in a Mediterranean river affected by hydropower. Water Policy 18(1):197–216
  • 7. Brooks BW, Riley TM, Taylor RD (2006) Water quality of effluent-dominated ecosystems: ecotoxicological, hydrological, and management considerations. Hydrobiologia 556(1):365–379
  • 8. Caissie J, Caissie D, El-Jabi N (2015) Hydrologically based environmental flow methods applied to rivers in the Maritime Provinces (Canada). River Res Appl 31(6):651–662
  • 9. Chen W, Olden JD (2017) Designing flows to resolve human and environmental water needs in a dam-regulated river. Nat Commun 8(1):2158
  • 10. Davies PM, Naiman RJ, Warfe DM, Pettit NE, Arthington AH, Bunn SE (2014) Flow–ecology relationships: closing the loop on effective environmental flows. Mar Freshw Res 65(2):133–141
  • 11. Elhatip H, Hinis MA (2015) Statistical approaches for estimating the environmental flows in a river basin: case study from the Euphrates River catchment, Eastern Anatolian part of Turkey. Environ Earth Sci 73(8):4633–4646
  • 12. Ghanbarpour MR, Zolfaghari S, Geiss C, Darvari Z (2013) Investigation of river flow alterations using environmental flow assessment and hydrologic indices: Tajan River Watershed Iran. Int J River Basin Manag 11(3):311–321
  • 13. Ghorbani K, Salarijazi M, Abdolhosseini M, Eslamian S, Ahmadianfar I (2019) Evaluation of Clark IUH in rainfall-runoff modelling (case study: Amameh Basin). Int J Hydrol Sci Technol 9(2):137–153
  • 14. Jensen P, Lee KL, Su YC, Glick R, Magin D (2002) Wet weather and the application of appropriate criteria for contact recreation. Proc Water Environ Fed 2002(8):1210–1222
  • 15. Jha R, Sharma KD, Singh VP (2008) Critical appraisal of methods for the assessment of environmental flows and their application in two river systems of India. KSCE J Civ Eng 12(3):213–219
  • 16. King JM, Tharme RE, Brown CA (1999) Definition and implementation of instream flows Thematic Report for the World Commission on Dams. Southern Waters Ecological Research and Consulting, Cape Town, SA, p 63
  • 17. Mann, J. L. (2006). Instream flow methodologies: an evaluation of the Tennant method for higher gradient streams in the national forest system lands in the western US Master of Science thesis. Colorado State University, Fort Collins
  • 18. McClain ME, Anderson EP (2015) The gap between best practice and actual practice in the allocation of environmental flows in integrated water resources management. In: Setegn S, Donoso M (eds) Sustainability of integrated water resources management. Springer, Cham, pp 103–120. https://doi.org/10.1007/978-3-319-12194-9_7
  • 19. Moazed H, Salarijazi M, Moradzadeh M, Soleymani S (2012) Changes in rainfall characteristics in Southwestern Iran. Afr J Agric Res 7(18):2835–2843
  • 20. Noori M, Zarghami M, Sharifi MB, Heydari M (2013) Utilization of LARS-WG model for modelling of meteorological parameters in Golestan Province of Iran. J River Eng 1. https://europub.co.uk/articles/32947
  • 21. Othman F, Heydari M, Sadeghian MS, Rashidi M, Shahiri Parsa M (2014) The necessity of systematic and integrated approach in water resources problems and evaluation methods, a review. Adv Environ Biol 8(19):307–315
  • 22. Pastor AV, Ludwig F, Biemans H, Hoff H, Kabat P (2014) Accounting for environmental flow requirements in global water assessments. Hydrol Earth Syst Sci 18(12):5041–5059
  • 23. Piniewski M, Laizé CL, Acreman MC, Okruszko T, Schneider C (2014) Effect of climate change on environmental flow indicators in the Narew Basin. Poland J Environ Qual 43(1):155–167
  • 24. Poff NL (2018) Beyond the natural flow regime? Broadening the hydro-ecological foundation to meet environmental flows challenges in a non-stationary world. Freshw Biol 63(8):1011–1021. https://doi.org/10.1111/fwb.13038
  • 25. Poff LeRoy N, David Allan J, Mark Bain B, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. BioScience 47(11):769–784
  • 26. Pyrce, R. (2004). Hydrological low flow indices and their uses. Watershed Science Centre,(WSC)Report, (04–2004).
  • 27. Richter BD, Baumgartner JV, Powell J, Braun DP (1996) A method for assessing hydrological alteration within ecosystems. Conserv Biol 10:1163–1174
  • 28. Richter BD, Davis MM, Apse C, Konrad C (2012) A presumptive standard for environmental flow protection. River Res Appl 28(8):1312–1321
  • 29. Rijal NH, Alfredsen K (2015) Environmental flows in Nepal-an evaluation of current practices and an analysis of the upper Trishuli-I hydroelectric project. Hydro Nepal: J Water Energy Environ 17:8–17
  • 30. Salarijazi M, Ghorbani K (2019) Improvement of the simple regression model for river’ EC estimation. Arab J Geosci 12(7):235
  • 31. Shenton W, Hart BT, Chan T (2011) Bayesian network models for environmental flow decision-making: 1. Latrobe River Australia. River Res Appl 27(3):283–296
  • 32. Smakhtin VU (2001) Low flow hydrology: a review. J Hydrol 240(3):147–186
  • 33. Smakhtin VY (2006) An assessment of environmental flow requirements of Indian river basins, vol 107. IWMI. https://www.tandfonline.com/doi/abs/10.1080/02508060408691785
  • 34. Smakhtin V, Revenga C, Doll P (2004) A pilot global assessment of environmental water requirements and scarcity. Water Int 29(3):307–317
  • 35. Tennant DL (1976) Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries 1:6–10
  • 36. Tharme RE (2003) A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Res Appl 19(5–6):397–441
  • 37. Trudel M, Doucet-Généreux PL, Leconte R (2017) Assessing river low-flow uncertainties related to hydrological model calibration and structure under climate change conditions. Climate 5(1):19
  • 38. Verma RK, Murthy S, Tiwary RK (2015) Assessment of environmental flows for various sub-watersheds of Damodar river basin using different hydrological methods. J Waste Resour 5(182):2
  • 39. Verma RK, Murthy S, Verma S, Mishra SK (2017) Design flow duration curves for environmental flows estimation in Damodar River Basin. India Appl Water Sci 7(3):1283–1293
  • 40. Wałęga A, Młyński D, Kokoszka R, Miernik W (2015) Possibilities of applying hydrological methods for determining environmental flows in select catchments of the upper Dunajec basin. Methodology (BBM) 29:32
  • 41. Watt SP (2007) A methodology for environmental protection of ontario watercourses with respect to the permit to take water program, Master Thesis. Queen’s University, Canada, p 124
  • 42. Wurbs RA (2017) Incorporation of environmental flows in water allocation in Texas. Water Int 42(1):18–33
  • 43. Zhang Z (2017) The index gage method to develop a flow duration curve from short-term streamflow records. J Hydrol 553:119–129
  • 44. Zhuo L, Mekonnen MM, Hoekstra AY, Wada Y (2016) Inter-and intra-annual variation of water footprint of crops and blue water scarcity in the Yellow River basin (1961–2009). Adv Water Resour 87:29–41
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8b7516e-dd30-4935-be11-853656df6051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.