PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of a turbulent hydrogen flame in oxy-combustion regimes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of large eddy simulation/conditional moment closure (LES-CMC) computations of a turbulent flame in oxy-combustion regimes complemented by 0D-CMC analysis. The fuel is pure hydrogen and it issues into a hot oxidiser stream which is a mixture of oxygen and water vapour. The flame is initiated by a spark, then it spreads and propagates through the domain and eventually stabilises as a lifted or attached one. The present problem offers new challenges to combustion modelling as the observed combustion process is strongly unsteady. In cases of large content of oxygen in the oxidiser stream the flame has very high temperature (≈ 3000 K) and large temperature/density variations. Nevertheless, it is shown that LES-CMC simulations are stable in such conditions and can be successfully applied to oxy-combustion studies. We analyse the dependence of the flame temperatures and lift-off height of the flames LH on the oxidiser composition and chemical kinetics. It is shown that both these factors may affect the flame behaviour. We identified the conditions in which LH exhibits a linear dependence on the oxidiser composition independently of applied chemical kinetics, and the regimes where the LH changes in a non-linear manner and strongly depends on the chemical kinetics.
Słowa kluczowe
Rocznik
Strony
157--175
Opis fizyczny
Bibliogr. 40 poz., rys. kolor.
Twórcy
autor
  • Częstochowa University of Technology Al. Armii Krajowej 21 42-201 Częstochowa, Poland
  • Częstochowa University of Technology Al. Armii Krajowej 21 42-201 Częstochowa, Poland
Bibliografia
  • 1. F.L. Horn, M. Steinberg, Control of carbon dioxide emissions from a power plant (and use in enhanced oil recovery), Fuel, 61, 415–422, 1982.
  • 2. B.M. Abraham, J.G. Asbury, E.P. Lynch and A.P.S. Teotia, Coal-oxygen process provides CO2 for enhanced recovery, Journal of Oil & Gas, 80, 68–70, 1982.
  • 3. G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, J. Maier, Oxy-fuel coal combustion — A review of the current state of the art, International Journal of Greenhouse Gas Control, 5, 16–35, 2011.
  • 4. R. Cabra, T. Myrvold, J.Y. Chen, R.W. Dibble, A.N. Karpetis, R.S. Barlow, Simultaneous laser Raman-Rayleigh-Lif measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow, Proceedings of the Combustion Institute, 29, 1881–1888, 2002.
  • 5. R. Seiser, K. Seshadri, The influence of water on extinction and ignition of hydrogen and methane flames, Proceedings of the Combustion Institute, 30, 407–414, 2005.
  • 6. A. Rosiak, A. Tyliszczak, LES–CMC simulations of a turbulent hydrogen jet in oxy-combustion regimes, International Journal of Hydrogen Energy, 41, 9705–9717, 2016.
  • 7. M.A. Mueller, T.J. Kim, R.A. Yetter, F.L. Dryer, Flow reactor studies and kinetic modeling of the H2/O2 reaction, International Journal of Chemical Kinetics, 31, 113–125, 1999.
  • 8. J. Li, Z. Zhao, A. Kazakov, F. L. Dryer, An updated comprehensive kinetic model of hydrogen combustion, International Journal of Chemical Kinetics, 36, 566–575, 2004.
  • 9. P. Warzecha, A. Boguslawski, LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies, Energy, 66, 732–743, 2014.
  • 10. P. Warzecha, A. Boguslawski, Simulations of pulverized coal oxy-combustion in swirl burner using RANS and LES methods, Fuel Processing Technology, 119, 130–135, 2014.
  • 11. J. Pedel, J.N. Thornock, P.J. Smith, Ignition of co-axial turbulent diffusion oxy-coal jet flames: Experiments and simulations collaboration, Combustion and Flame, 160, 1112–1128, 2013.
  • 12. J. Zhang, K. Kelly, E. Eddings, J. Wendt, Ignition in 40 kW co-axial turbulent diffusion oxy-coal jet flames, Proceedings of the Combustion Institute, 33, 3375–3382, 2011.
  • 13. A. Garmory, E. Mastorakos, Numerical simulation of oxy-fuel jet flames using unstructured LES–CMC, Proceedings of the Combustion Institute, 35, 1207–1214, 2015.
  • 14. S. Navarro-Martinez, A. Kronenburg, Conditional moment closure for large eddy simulations, Flow, Turbulence and Combustion, 87, 377–406, 2011.
  • 15. A. Garmory, E. Mastorakos, Capturing localised extinction in Sandia Flame F with LES–CMC, Proceedings of the Combustion Institute, 33, 1673–1680, 2011.
  • 16. I. Stanković, E. Mastorakos, B. Merci, LES–CMC simulations of different autoignition regimes of hydrogen in a hot turbulent air co-flow, Flow, Turbulence and Combustion, 90, 583–604, 2013.
  • 17. A. Tyliszczak, Assessment of implementation variants of conditional scalar dissipation rate in LES–CMC simulation of auto-ignition of hydrogen jet, Archives of Mechanics, 65, 97–129, 2013.
  • 18. A. Triantafyllidis, E. Mastorakos, R.L.G.M. Eggels, Large eddy simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure, Combustion and Flame, 156, 2328–2345, 2009.
  • 19. A. Tyliszczak, B.J. Geurts, Parametric analysis of excited round jets-numerical study, Flow, Turbulence and Combustion, 93, 221–247, 2014.
  • 20. A. Tyliszczak, Multi-armed jets: A subset of the blooming jets, Physics of Fluids, 27, 1–7, (041703), 2015.
  • 21. A. Tyliszczak, LES–CMC study of an excited hydrogen flame, Combustion and Flame, 162, 3864–3883, 2015.
  • 22. B.J. Geurts, Elements of Direct and Large-Eddy Simulation, Edwards Publishing, 2003.
  • 23. P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer, 2001.
  • 24. A.W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Physics of Fluids, 16, 3670–3681, 2004.
  • 25. Y.A. Klimenko, R.W. Bilger, Conditional moment closure for turbulent combustion, Progress in Energy and Combustion Science, 25, 595–687, 1999.
  • 26. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion, Edwards, 2001.
  • 27. A. Triantafyllidis, E. Mastorakos, Implementation issues of the conditional moment closure model in large eddy simulations, Flow, Turbulence and Combustion, 84, 481–512, 2010.
  • 28. S. Navarro-Martinez, A. Kronenburg, F. di Mare, Conditional moment closure for large eddy simulations, Flow, Turbulence and Combustion, 75, 245–274, 2005.
  • 29. A.W. Cook, J.J. Riley, A subgrid model for equilibrium chemistry in turbulent flows, Physics of Fluids, 6, 2868–2870, 1994.
  • 30. N. Branley, W. Jones, Large eddy simulation of a turbulent non-premixed flame, Combustion and Flame, 127, 1914–1934, 2001.
  • 31. I.S. Kim, E. Mastorakos, Simulations of turbulent lifted jet flames with two-dimensional conditional moment closure, Proceedings of the Combustion Institute, 30, 911–918, 2005.
  • 32. I.S. Kim, E. Mastorakos, Simulations of turbulent non-premixed counterflow flames with first-order conditional moment closure, Flow, Turbulence and Combustion, 76, 133–162, 2006.
  • 33. A. Tyliszczak, D.E. Cavaliere, E. Mastorakos, LES/CMC of blow-off in a liquid fueled swirl burner, Flow, Turbulence and Combustion, 92, 237–267, 2013.
  • 34. A. Tyliszczak, A high-order compact difference algorithm for half-staggered grids for laminar and turbulent incompressible flows, Journal of Computational Physics, 276, 438–467, 2014.
  • 35. A. Tyliszczak, High-order compact difference algorithm on half-staggered meshes for low Mach number flows, Computers & Fluids, 127, 131–145, 2016.
  • 36. P.N. Brown, G.D. Byrne, A.C. Hindmarsh, VODPK: A Variable-Coefficient Ordinary Differential Equation Solver with the Preconditioned Krylov method GMRES for the Solution of Linear Systems, available from Netlib, 1994.
  • 37. P.N. Brown, G.D. Byrne, A.C. Hindmarsh, VODE: A variable-coefficient ODE solver, SIAM Journal on Scientific and Statistical Computing, 10, 1038–1051, 1989.
  • 38. P.N. Brown, A.C. Hindmarsh, Reduced storage matrix methods in stiff ODE systems, Applied Mathematics and Computation, 31, 40–91, 1989.
  • 39. S.F. Ahmed, E. Mastorakos, Spark ignition of lifted turbulent jet flames, Combustion and Flame, 146, 215–231, 2006.
  • 40. C.J. Lawn, Lifted flames on fuel jets in co-flowing air, Progress in Energy and Combustion Science, 35, 1–30, 2009.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8b716c8-a93f-4df0-b1e3-4255fcd27632
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.