PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Theoretical Simulations on Physicochemical Performance of Novel High-energy BHDBT-based Propellants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on Energy Calculation Star program and molecular dynamic method, three designed 2,3-bis(hydroxymethyl)-2,3-dinitro-1,4-butanediol tetranitrate-based (BHDBT) propellants are firstly reported and their physicochemical performance are investigated. Results suggest that compared with HMX-based and CL-20-based propellants, the specific impulses of all BHDBT-based propellants surpass or approximate 280 s, which indicates the latter have the potential to be high-energy propellants. The diffusion coefficient of plasticizers in BHDBT-based propellant decrease as the temperature reduces, and reduce in the order: Bu-NENA > TMETN > BTTN. The densities of all BHDBT-based propellants surpass or approximate 1.7 g/cm3. The comparison of elastic constants, Poisson’s ratios and K/G values indicates that the mechanical properties of three BHDBT-based propellants increase in the order (by plasticizer): Bu-NENA < TMETN < BTTN. The bond length analysis of C–NO2 and O–NO2 bond in BHDBT suggests that the former is the trigger bond in the BHDBT-based propellants, and the safety of BHDBT-based propellants and BHDBT crystal decreases in the order: GAP/BTTN/Al/BHDBT > GAP/Bu-NENA/Al/BHDBT ≈ GAP/TMETN/Al/BHDBT > BHDBT. In conclusion, GAP/BTTN/Al/BHDBT propellant has the potential to be a novel high-energy propellant.
Słowa kluczowe
Rocznik
Strony
5--24
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
autor
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
  • Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
Bibliografia
  • [1] Yoshimura, T.; Esumi, K. Synthesis and Surface Properties of Anionic Gemini Surfactants with Amide Groups. J. Colloid Interface Sci. 2004, 276(1): 231-238.
  • [2] Lempert, D.; Nechiporenko, G.; Manelis, G. Energetic Performances of Solid Composite Propellants. Cent. Eur. J. Energ. Mater. 2011, 8(1): 25-38.
  • [3] Kanti Sikder, A.; Reddy, S. Review on Energetic Thermoplastic Elastomers (ETPEs) for Military Science. Propellants Explos. Pyrotech. 2013, 38(1): 14-28.
  • [4] Pei, Q.; Zhao, F.-Q.; Gao, H.-X.; Xu, S.-Y.; Hao, H.-X.; Yao, E.-G.; Zhou, Z.-M. Research on Application of Energetic Triazole Ionic Salts in Solid Propellant. (in Chinese) Acta Armamentarii 2014, 35(92): 1387-139.
  • [5] Sivabalan, R.; Talawar, M.; Senthilkumar, N.; Kavitha, B.; Asthana, S.N. Studies on Azotetrazolate based High Nitrogen Content High Energy Materials Potential Additives for Rocket Propellants. J. Therm. Anal. Calorim. 2004, 78(3): 781-792.
  • [6] Shao, H.-s.; Ling, Yi-f., L.; Hou, T.-j.; Ruan, H.-w.; Wang, Ch.-j.; Luo, J. Synthesis and Characterization of 9-Nitro-9-azabicyclo [3.3.1]nonane-2,6-diyl Dinitrate. (in Chinese) Chin. J. Explos. Propellants 2016, 39(2): 64-67.
  • [7] Stepanov, A.I.; Dashko, D.V.; Astrat’ev, A.A. 3,4-Bis(4’-nitrofurazan-3’-yl)furoxan: a Melt Cast Powerful Explosive and a Valuable Building Block in 1,2,5-Oxadiazole Chemistry. Cent. Eur. J. Energ. Mater. 2012, 9(4): 329-342.
  • [8] Fischer, N.; Fischer, D.; Klapötke, T.M.; Piercey, D.G.; Stierstorfer J. Pushing the Limits of Energetic Materials – the Synthesis and Characterization of Dihydroxylammonium 5,5’-Bistetrazole-1,1’-diolate. J. Mater. Chem. 2012, 22(38): 20418-20422.
  • [9] Chavez, D.E.; Hiskey, M.A.; Naud, D.L.; Parrish, D. Synthesis of an Energetic Nitrate Ester. Angew. Chem. Int. Ed. 2008, 47: 8307-8309.
  • [10] Fuqiang, B.; Junliang, Y.; Bozhou, W.; Fan, X.-Z.; Ge, Z.-X.; Xu, Ch.; Liu, Q.; Kang, B. Synthesis, Crystal Structure and Properties of 2,3-Bis(Hydroxymethyl)-2,3-dinitro-1,4-butanedioltetranitrate. (in Chinese) Chin. J. Org. Chem. 2011, 31(11): 1893-1900.
  • [11] Sizov, V.A.; Pleshakov, D.V.; Asachenko, A.F.; Asachenko, A.F.; Topchiy, M.A.; Nechaev, M.S. Synthesis and Study of the Thermal and Ballistic Properties of SMX. Cent. Eur. J. Energ. Mater. 2018, 15(1): 30-46.
  • [12] Reese, D.A.; Son, S.F.; Groven, L.J. Composite Propellant based on a New Nitrate Ester. Propellants Explos. Pyrotech. 2014, 39(5): 684-688.
  • [13] Bin, H.; Jinxuan, H.; Xiao-ting, R.; Yilin, C. Synthesis, Crystal Morphology Control of SEM and its Compatibility of HTPB Propellant. (in Chinese) Chin. J. Energ. Mater. 2017, 25(4): 348-352.
  • [14] Yang, S.; Qu, J. Computing Thermomechanical Properties of Crosslinked Epoxy by Molecular Dynamic Simulations. Polymer 2012, 53(21): 4806-4817.
  • [15] Zhu, W.; Liu, D.M.; Xiao, J.J.; Zhao, X.-B.; Zheng, J.; Zhao, F.; Xiao, H.-M. Molecular Dynamics Study on Sensitivity Criterion, Thermal Expansion and Mechanical Properties of Multi-component High Energy Systems. (in Chinese) Chin. J. Energ. Mater. 2014, 22(5): 582-587.
  • [16] Ma, S.; Li, Y.; Li, Y.; Luo, Y. Research on Structures, Mechanical Properties, and Mechanical Responses of TKX-50 and TKX-50 based PBX with Molecular Dynamics. J. Mol. Model. 2016, 22(2), article 43: 1-11.
  • [17] Li, M.; Zhao, F.Q.; Xu, S.Y.; Gao, H.X.; Yi, Y.H.; Pei, Q.; Tan, Y.; Li, N.; Li, X. Comparison of Three Kinds of Energy Calculation Programs in Formulation Design of Solid Propellants. (in Chinese) Chin. J. Energ. Mater. 2013, 36(3): 73-77.
  • [18] Material Studio 8.0. Acceryls Inc., San Diego, 2014.
  • [19] Ma, X.; Zhao, F.; Ji, G.; Zhu, W.; Xiao, J.; Xiao, H. Computational Study of Structure and Performance of Four Constituents HMX-based Composite Material. J. Mol. Struct.: THEOCHEM 2008, 851(1-3): 22-29.
  • [20] Lu, Y.-y.; Shu, Y.-j.; Liu, N.; Shu, Y.; Wang, K.; Wu, Z.-k.; Wang, X.-ch.; Ding, X.-y. Theoretical Simulations on the Glass Transition Temperatures and Mechanical Properties of Modified Glycidyl Azide Polymer. Comput. Mater. Sci. 2017, 139: 132-139.
  • [21] Ewald, P.P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 1921, 369(3): 253-287.
  • [22] Karasawa, N.; Goddard III, W.A. Acceleration of Convergence for Lattice Sums J. Phys. Chem. 1989, 93(21): 7320-7327.
  • [23] Andersen, H.C. Molecular Dynamics Simulations at Constant Pressure and/or Temperature. J. Chem. Phys. 1980, 72(4): 2384-2393.
  • [24] Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.D.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81(8): 3684-3690.
  • [25] Verlet, L. Computer “Experiments” on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Phys. Rev. 1967, 159(1): 98-103.
  • [26] Qian, W.; Shu, Y.; Li, H.; Ma, Q. The Effect of HNS on the Reinforcement of TNT Crystal: a Molecular Simulation Study. J. Mol. Model. 2014, 20(10), article 2461: 1-7.
  • [27] Weiner, J.H. Statistical Mechanics of Elasticity. Courier Corporation, 2012; ISBN 9780486161235.
  • [28] Xu, X.J.; Xiao, H.M.; Xiao, J.J.; Wei Zhu, W.; Huang, H.; Li, J.-S. Molecular Dynamics Simulations for Pure ε-CL-20 and ε-CL-20-based PBXs. J. Phys. Chem. B 2006, 110(14): 7203-7207.
  • [29] Watt, J.P.; Davies, G.F.; O’Connell, R.J. The Elastic Properties of Composite Materials. Rev. Geophys. 1976, 14(4): 541-563.
  • [30] Pei, J.-F.; Zhao, F.-Q.; Song, X.-D.; Xu, S.-Y.; Yao, E.-G.; Li, M. Calculation and Analysis on Energy Characteristics of High Energy Propellants Based on BAMO/ AMMO Copolymers. (in Chinese) Chin. J. Energ. Mater. 2015, 23(1): 37-42.
  • [31] Liu, Q.L.; Huang, Y. Transport Behavior of Oxygen and Nitrogen through Organasilicon-Containing Polystyrenes by Molecular Simulation. J. Phys. Chem. B 2006, 110(35): 17375-17382.
  • [32] Haesslin, H.W. Dimethylsiloxane-ethylene Oxide Block Copolymers, 2. Preliminary Results on Dilute Solution Properties. Makromol. Chem. 1985, 186(2): 357-366.
  • [33] Yu, Z.-F.; Fu, X.-L.; Yu, H.-J.; Qin, G.-M.; Tan, H.-M.; Cui, G.-L. Mesoscopic Molecular Simulation of Migration of NG and BTTN in Polyurethane. (in Chinese) Chin. J. Energ. Mater. 2015, 23(9): 858-864.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8b6f269-dc5c-4b27-834b-a25bddb41aa2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.