PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A 6-DOF in-situ tracking system-based kinematic parameters online learning method for the parallel robot

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Kinematic parameter errors of parallel robots are affected by manufacturing errors, assembly errors, and shape errors caused by heavy loads, resulting in a gradual decrease of their kinematic accuracy. This study proposes an online learning method for the kinematic parameter errors based on a six-degree-of-freedom (6-DOF) in-situ tracking system, which achieves their online identification. This method uses six high-precision measurement legs that are embedded in the parallel robot to achieve in-situ data measurement and adopts an online learning method to identify the kinematic parameter errors. Experimental results compared with the least squares method demonstrated that the proposed method effectively achieves online identification of the kinematic parameter errors, with position and orientation accuracy improved by 85.3% and 79.2%, respectively. Moreover, it can also maintain small position deviations even under varying loads, thus sustaining the high-accuracy motion of the parallel robot.
Rocznik
Strony
1--17
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr., wzory
Twórcy
autor
  • College of Electrical Engineering, Guizhou University, 550025 Guiyang, China
autor
  • Institute of Mechanics and Acoustic Metrology, National Institute of Metrology, 100029 Beijing, China
  • Institute of Mechanics and Acoustic Metrology, National Institute of Metrology, 100029 Beijing, China
autor
  • College of Electrical Engineering, Guizhou University, 550025 Guiyang, China
autor
  • Institute of Mechanics and Acoustic Metrology, National Institute of Metrology, 100029 Beijing, China
autor
  • Institute of Mechanics and Acoustic Metrology, National Institute of Metrology, 100029 Beijing, China
Bibliografia
  • [1] Furqan, M., Suhaib, M., & Ahmad, N. (2017). Studies on Stewart platform manipulator: A review. Journal of Mechanical Science and Technology, 31(9), 4459-4470. https://doi.org/10.1007/s12206-017-0846-1
  • [2] Patel, Y. D., & George, P. M. (2012). Parallel Manipulators Applications - A Survey. Modern Mechanical Engineering, 02(03), 57-64. https://doi.org/10.4236/mme.2012.23008
  • [3] Huang, T., Zhao, D., Yin, F., Tian, W., & Chetwynd, D. G. (2018). Kinematic calibration of a 6-DOF hybrid robot by considering multicollinearity in the identification Jacobian. Mechanism and Machine Theory, 131, 371-384. https://doi.org/10.1016/j.mechmachtheory.2018.10.008
  • [4] Song, Y., Zhang, J., Lian, B., & Sun, T. (2016). Kinematic calibration of a 5-DoF parallel kinematic machine. Precision Engineering, 45, 242-261. https://doi.org/10.1016/j.precisioneng.2016.03.002
  • [5] Huang, P., Wang, J., Wang, L., & Yao, R. (2011). Identification of structure errors of 3-PRS-XY mechanism with Regularization method. Mechanism and Machine Theory, 46(7), 927-944. https://doi.org/10.1016/j.mechmachtheory.2011.02.006
  • [6] Zhang, N., Huang, P., & Li, Q. (2017). Modeling, design and experiment of a remote-center-of-motion parallel manipulator for needle insertion. Robotics and Computer-Integrated Manufacturing, 50, 193-202. https://doi.org/10.1016/j.rcim.2017.09.014
  • [7] Sun, T., Song, Y., Dong, G., Lian, B., & Liu, J. (2012). Optimal design of a parallel mechanism with three rotational degrees of freedom. Robotics and Computer-Integrated Manufacturing, 28(4), 500-508. https://doi.org/10.1016/j.rcim.2012.02.002
  • [8] Hu, Y., Gao, F., Zhao, X., Wei, B., Zhao, D., & Zhao, Y. (2018). Kinematic calibration of a 6-DOF parallel manipulator based on identifiable parameters separation (IPS). Mechanism and Machine Theory, 126, 61-78. https://doi.org/10.1016/j.mechmachtheory.2018.03.019
  • [9] Yang, L., Liao, R., Lin, J., Sun, B., Wang, Z., Keogh, P., & Zhu, J. (2019). Enhanced 6D measurement by integrating an Inertial Measurement Unit (IMU) with a 6D sensor unit of a laser tracker. Optics and Lasers in Engineering, 126, 105902. https://doi.org/10.1016/j.optlaseng.2019.105902
  • [10] Yang, Q., Cai, C., Yang, M., Kong, M., Liu, Z., & Liang, F. (2022). Dynamic tilt testing of MEMS inclinometers based on conical motions. Metrology and Measurement Systems, Vol. 30 (2023) No. 1, 31-47. https://doi.org/10.24425/mms.2023.144398
  • [11] Ye, T., Liu, Z., Cai, C., Bao, F., Xu, F., & Lian, X. (2024). A novel ultra-low-frequency micro-vibration calibration method based on virtual pendulum motion trajectories of the Stewart platform. Metrology and Measurement Systems, Vol. 31 (2024) No. 2, 323-338. https://doi.org/10.24425/mms.2024.149695
  • [12] Fu, L., Liu, Z., Cai, C., Tao, M., Yang, M., & Huang, H. (2023). Joint space-based optimal measurement configuration determination method for Stewart platform kinematics calibration. Measurement, 211, 112646. https://doi.org/10.1016/j.measurement.2023.112646
  • [13] Fu, L., Yang, M., Liu, Z., Tao, M., Cai, C., & Huang, H. (2022). Stereo vision-based Kinematic calibration method for the Stewart platforms. Optics Express, 30(26), 47059. https://doi.org/10.1364/oe.479597
  • [14] Yang, M., Wang, Y., Liu, Z., Zuo, S., Cai, C., Yang, J., & Yang, J. (2021). A monocular vision-based decoupling measurement method for plane motion orbits. Measurement, 187, 110312. https://doi.org/10.1016/j.measurement.2021.110312
  • [15] Zhu, X., Liu, Z., Cai, C., Yang, M., Zhang, H., Fu, L., & Zhang, J. (2024). Deep learning-based predicting and compensating method for the pose deviations of parallel robots. Computers & Industrial Engineering, 191, 110179. https://doi.org/10.1016/j.cie.2024.110179
  • [16] Kong, L., Chen, G., Zhang, Z., & Wang, H. (2017). Kinematic calibration and investigation of the influence of universal joint errors on accuracy improvement for a 3-DOF parallel manipulator. Robotics and Computer-Integrated Manufacturing, 49, 388-397. https://doi.org/10.1016/j.rcim.2017.08.002
  • [17] Švaco, M., Šekoranja, B., Šuligoj, F., & Jerbić, B. (2014). Calibration of an industrial robot using a stereo vision system. Procedia Engineering, 69, 459-463. https://doi.org/10.1016/j.proeng.2014.03.012
  • [18] Li, F., Zeng, Q., Ehmann, K. F., Cao, J., & Li, T. (2018). A calibration method for overconstrained spatial translational parallel manipulators. Robotics and Computer-Integrated Manufacturing, 57, 241-254. https://doi.org/10.1016/j.rcim.2018.12.002
  • [19] Khalil, W., & Besnard, S. (1999). Self calibration of Stewart-Gough parallel robots without extra sensors. IEEE Transactions on Robotics and Automation, 15(6), 1116-1121. https://doi.org/10.1109/70.817674
  • [20] Chiu, Y. J., & Perng, M. H. (2003). Self-calibration of a general hexapod manipulator using cylinder constraints. International Journal of Machine Tools and Manufacture, 43, 1051-1066. https://doi.org/10.1016/S0890-6955(03)00082-8
  • [21] Zhang, B., Zhou, F., Shang, W., & Cong, S. (2019). Auto-Calibration and Online-Adjustment of the Kinematic Uncertainties for Redundantly Actuated Cable-Driven Parallel Robots. In 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM). https://doi.org/10.1109/icarm.2019.8833698
  • [22] Qian, S., Jiang, X., Qian, P., Zi, B., & Zhu, W. (2024). Calibration of static errors and compensation of dynamic errors for cable-driven parallel 3D printer. Journal of Intelligent & Robotic Systems, 110(1). https://doi.org/10.1007/s10846-024-02062-x
  • [23] Zhang, Y., Liu, Z., Zheng, D., & Cai, C. (2022). The self-calibration method based on grating-rulers used for 6-DOF motion measurement system. Measurement, 204, 111894. https://doi.org/10.1016/j.measurement.2022.111894
  • [24] Merlet, J.-P. (2004). Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis. The International Journal of Robotics Research, 23(3), 221-235. https://doi.org/10.1177/0278364904039806
  • [25] Zhou, W., Chen, W., Liu, H., & Li, X. (2015). A new forward kinematic algorithm for a general Stewart platform. Mechanism and Machine Theory, 87, 177-190. https://doi.org/10.1016/j.mechmachtheory.2015.01.002
  • [26] Huang, X., Liao, Q., & Wei, S. (2009). Closed-form forward kinematics for a symmetrical 6-6 Stewart platform using algebraic elimination. Mechanism and Machine Theory, 45(2), 327-334. https://doi.org/10.1016/j.mechmachtheory.2009.09.008
  • [27] Zhao, K., Liu, Z., Cai, C., Bao, F., Tu, C., & Qi, Y. (2023). Design and calibration of the 6-DOF motion tracking system integrated on the Stewart parallel manipulator. Optics Express, 32(1), 287. https://doi.org/10.1364/oe.510804
  • [28] Bavdekar, V. A., Deshpande, A. P., & Patwardhan, S. C. (2011). Identification of process and measurement noise covariance for state and parameter estimation using extended Kalman filter. Journal of Process Control, 21(4), 585-601. https://doi.org/10.1016/j.jprocont.2011.01.001
  • [29] Ryaben’kii, V. S., & Tsynkov, S. V. (2006). A Theoretical Introduction to Numerical Analysis. In Chapman and Hall/CRC eBooks. https://doi.org/10.1201/9781420011166
  • [30] Chen, J., Xie, F., Liu, X., & Chong, Z. (2022). Elasto-geometrical calibration of a hybrid mobile robot considering gravity deformation and stiffness parameter errors. Robotics and Computer-Integrated Manufacturing, 79, 102437. https://doi.org/10.1016/j.rcim.2022.102437
  • [31] Song, S., Dai, X., Huang, Z., & Gong, D. (2020). Load parameter identification for parallel robot manipulator based on extended Kalman filter. Complexity, 2020, 1-12. https://doi.org/10.1155/2020/8816374
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8b62b75-885c-42f0-83c9-296e5d735705
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.